三维点图和三维PCA图
2021-06-23 本文已影响0人
小洁忘了怎么分身
3dscatter
1.ggplot2画三维点图
很轻松找到了R包,然鹅不是很完美的样子。
#devtools::install_github("AckerDWM/gg3D")
library("gg3D")
library(ggplot2)
data(iris)
ggplot(iris, aes(x=Petal.Width, y=Sepal.Width, z=Petal.Length, color=Species)) +
theme_void() +
axes_3D() +
stat_3D()
2.scatterplot3d
一个不属于ggplot2体系的特立独行的R包,画起来还算简单。
参数pch表示形状,不同形状可以以数字1-24来代表。颜色的指定不支持映射,只能是把每个点的颜色设置好,传递给color参数。图例需要单独画,不能自动生成,但最终出土的颜值我还是喜欢的。sthda上面也有关于这个包的漂亮代码: http://www.sthda.com/english/wiki/scatterplot3d-3d-graphics-r-software-and-data-visualization
#install.packages("scatterplot3d")
library(scatterplot3d)
my_color = c("#66C2A5FF", "#FC8D62FF", "#8DA0CBFF")
colors = my_color[as.numeric(iris$Species)]
p1 = scatterplot3d(iris[,1:3],color = colors,main="iris",pch = 16)
legend(p1$xyz.convert(8.5, 2.5, 5), legend = levels(iris$Species),
col = my_color, pch = 16)
p2 = scatterplot3d(iris[,1:3],color = "black",main="iris",pch = 21,bg = colors)
legend(p2$xyz.convert(8.5, 2.5, 5),col = "black", legend = levels(iris$Species),pt.bg = my_color, pch = 21)
3.三维PCA图
PCA已经有好几个可视化的R包啦,把前三个主成分提取出来画三维点图也挺好看~
library(FactoMineR)
dat = iris[,1:4]
dat.pca = PCA(dat,graph = F)
a = dat.pca[["ind"]][["coord"]]
p3 = scatterplot3d(a[,1:3],color = "black",main="iris",pch = 21,bg = colors)
legend("bottom",col = "black", legend = levels(iris$Species),pt.bg = my_color, pch = 21,
inset = -0.2, xpd = TRUE, horiz = TRUE)
my_pch = 22:24
pchs = my_pch[as.numeric(iris$Species)]
p4 = scatterplot3d(a[,1:3],color = "black",main="iris",pch = pchs,bg = colors)
legend("bottom",col = "black", legend = levels(iris$Species),pt.bg = my_color, pch = my_pch,
inset = -0.2, xpd = TRUE, horiz = TRUE)