iOS-OC对象原理_objc_msgSend(二)
前言
iOS-OC对象原理_objc_msgSend(一)
在上篇文章中我们探索了objc_msgSend()
的慢速查找流程,即先从cache_t cache
中的buckets
中查找是否有sel == _cmd
,存在则返回;不存在,将进入慢速查找流程,即_lookUpImpOrForward
流程,今天我们就详细的探索下它的具体实现。
回顾
我们第一次看到_lookUpImpOrForward
是在objc-msg.arm64.s
汇编文件中(这里以arm64
为例):
// lookUpImpOrForward(obj, sel, cls, LOOKUP_INITIALIZE | LOOKUP_RESOLVER)
// receiver and selector already in x0 and x1
mov x2, x16
mov x3, #3
bl _lookUpImpOrForward
// IMP in x0
mov x17, x0
但是我们在该文件下搜索,并没有找到该跳转指令的实现;然后通过全局搜索依然没有找到:

然后在汇编代码片段开始有两行醒目的注释:
// lookUpImpOrForward(obj, sel, cls, LOOKUP_INITIALIZE | LOOKUP_RESOLVER)
// receiver and selector already in x0 and x1
全局搜索lookUpImpOrForward
,豁然开朗,这一跳转就又来到了C++代码(骚的一批),我们锁定了objc-runtime-new.mm
:

lookUpImpOrForward
实现源码:
IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior)
{
const IMP forward_imp = (IMP)_objc_msgForward_impcache;
IMP imp = nil;
Class curClass;
runtimeLock.assertUnlocked();
// Optimistic cache lookup
if (fastpath(behavior & LOOKUP_CACHE)) {
imp = cache_getImp(cls, sel);
if (imp) goto done_nolock;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
runtimeLock.lock();
// We don't want people to be able to craft a binary blob that looks like
// a class but really isn't one and do a CFI attack.
//
// To make these harder we want to make sure this is a class that was
// either built into the binary or legitimately registered through
// objc_duplicateClass, objc_initializeClassPair or objc_allocateClassPair.
//
// TODO: this check is quite costly during process startup.
checkIsKnownClass(cls);
if (slowpath(!cls->isRealized())) {
cls = realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);
// runtimeLock may have been dropped but is now locked again
}
if (slowpath((behavior & LOOKUP_INITIALIZE) && !cls->isInitialized())) {
cls = initializeAndLeaveLocked(cls, inst, runtimeLock);
// runtimeLock may have been dropped but is now locked again
// If sel == initialize, class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
runtimeLock.assertLocked();
curClass = cls;
// The code used to lookpu the class's cache again right after
// we take the lock but for the vast majority of the cases
// evidence shows this is a miss most of the time, hence a time loss.
//
// The only codepath calling into this without having performed some
// kind of cache lookup is class_getInstanceMethod().
for (unsigned attempts = unreasonableClassCount();;) {
// curClass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
imp = meth->imp;
goto done;
}
if (slowpath((curClass = curClass->superclass) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = forward_imp;
break;
}
// Halt if there is a cycle in the superclass chain.
if (slowpath(--attempts == 0)) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
imp = cache_getImp(curClass, sel); // 有问题???? cache_getImp - lookup - lookUpImpOrForward
if (slowpath(imp == forward_imp)) {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
if (fastpath(imp)) {
// Found the method in a superclass. Cache it in this class.
goto done;
}
}
// No implementation found. Try method resolver once.
if (slowpath(behavior & LOOKUP_RESOLVER)) {
behavior ^= LOOKUP_RESOLVER;
return resolveMethod_locked(inst, sel, cls, behavior);
}
done:
log_and_fill_cache(cls, imp, sel, inst, curClass);
runtimeLock.unlock();
done_nolock:
if (slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)) {
return nil;
}
return imp;
}
核心代码片段:
for (unsigned attempts = unreasonableClassCount();;) {
// curClass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
imp = meth->imp;
goto done;
}
if (slowpath((curClass = curClass->superclass) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = forward_imp;
break;
}
// Halt if there is a cycle in the superclass chain.
if (slowpath(--attempts == 0)) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (slowpath(imp == forward_imp)) {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
if (fastpath(imp)) {
// Found the method in a superclass. Cache it in this class.
goto done;
}
}
该片段会进入一个循环,开始从curClass
->superClass
->NSObject
->nil
,如果查询到执行goto done
跳出循环,如果没有找到,即curClass == nil
时,break
跳出循环。如下图:

上面的流程图中就简单的展示了
lookUpImpOrForward
方法实现的大致逻辑。这里的
log_and_fill_cacahe()
会触发cache_t
内部的fill_cache()
方法,然后再到insert()
,最终插入到缓存列表。
这里在更深入的看下getMethodNoSuper_nolock
的内部实现:
static method_t *
getMethodNoSuper_nolock(Class cls, SEL sel)
{
runtimeLock.assertLocked();
ASSERT(cls->isRealized());
// fixme nil cls?
// fixme nil sel?
auto const methods = cls->data()->methods();
for (auto mlists = methods.beginLists(),
end = methods.endLists();
mlists != end;
++mlists)
{
// <rdar://problem/46904873> getMethodNoSuper_nolock is the hottest
// caller of search_method_list, inlining it turns
// getMethodNoSuper_nolock into a frame-less function and eliminates
// any store from this codepath.
method_t *m = search_method_list_inline(*mlists, sel);
if (m) return m;
}
return nil;
}
auto const methods = cls->data()->methods()
,这里其实就是获取当前class
的class_data_bits_t *bit
下的bit->data()
,也就是class_rw_t
这个结构体的内容,并读取了该结构体的methods()
,获取方法列表。
继续将获取到的methods
传递给search_method_list_inline()
方法:
ALWAYS_INLINE static method_t *
search_method_list_inline(const method_list_t *mlist, SEL sel)
{
int methodListIsFixedUp = mlist->isFixedUp();
int methodListHasExpectedSize = mlist->entsize() == sizeof(method_t);
if (fastpath(methodListIsFixedUp && methodListHasExpectedSize)) {
return findMethodInSortedMethodList(sel, mlist);
} else {
// Linear search of unsorted method list
for (auto& meth : *mlist) {
if (meth.name == sel) return &meth;
}
}
#if DEBUG
// sanity-check negative results
if (mlist->isFixedUp()) {
for (auto& meth : *mlist) {
if (meth.name == sel) {
_objc_fatal("linear search worked when binary search did not");
}
}
}
#endif
return nil;
}
经过一个判断后,又将方法列表mlist
和目标sel
,传递到findMethodInSortedMethodList()
方法中:
ALWAYS_INLINE static method_t *
findMethodInSortedMethodList(SEL key, const method_list_t *list)
{
ASSERT(list);
const method_t * const first = &list->first;
const method_t *base = first;
const method_t *probe;
uintptr_t keyValue = (uintptr_t)key;
uint32_t count;
for (count = list->count; count != 0; count >>= 1) {
probe = base + (count >> 1);
uintptr_t probeValue = (uintptr_t)probe->name;
if (keyValue == probeValue) {
// `probe` is a match.
// Rewind looking for the *first* occurrence of this value.
// This is required for correct category overrides.
while (probe > first && keyValue == (uintptr_t)probe[-1].name) {
probe--;
}
return (method_t *)probe;
}
if (keyValue > probeValue) {
base = probe + 1;
count--;
}
}
return nil;
}
这里是真正的开始查找流程,这里采用了二分法查询,当查询到就返回method_t
,否则返回nil
。
大致流程图如下:

补充
forward_imp
const IMP forward_imp = (IMP)_objc_msgForward_impcache;
在lookUpImpOrForward()
方法中,在某种情况下会imp = forward_imp
,当返回forward_imp
后,又做了哪些处理呐?我们来探索下:
#if !OBJC_OLD_DISPATCH_PROTOTYPES
extern void _objc_msgForward_impcache(void);
#else
extern id _objc_msgForward_impcache(id, SEL, ...);
#endif
又看不到实现了,经验告诉我又要跳转到汇编:
STATIC_ENTRY __objc_msgForward_impcache
// No stret specialization.
b __objc_msgForward
END_ENTRY __objc_msgForward_impcache
ENTRY __objc_msgForward
adrp x17, __objc_forward_handler@PAGE
ldr p17, [x17, __objc_forward_handler@PAGEOFF]
TailCallFunctionPointer x17
END_ENTRY __objc_msgForward
这里面的流程:__objc_msgForward_impcache
->__objc_msgForward
->__objc_forward_handler
,在汇编中又找不到__objc_forward_handler
的实现了,妈妈的~,回到C++:
// Default forward handler halts the process.
__attribute__((noreturn, cold)) void
objc_defaultForwardHandler(id self, SEL sel)
{
_objc_fatal("%c[%s %s]: unrecognized selector sent to instance %p "
"(no message forward handler is installed)",
class_isMetaClass(object_getClass(self)) ? '+' : '-',
object_getClassName(self), sel_getName(sel), self);
}
void *_objc_forward_handler = (void*)objc_defaultForwardHandler;
好熟悉的味道 😃😀,unrecognized selector sent to instance xxxx
,看到了让你大脑瞬间崩溃的东西,原来是来自这里。
这也就意味着,当imp = forward_imp
,系统也就放弃治疗了,直接进入Crash流程。
总结
我们以 [person sayHello]
为例:
该方法在编译后变为objc_msgSend(person,sel_registerName("sayHello"))
;
首先会进入快速查找流程,该流程的实现在汇编指令中完成:
1.查到person
的类对象,person->isa->Class
;
2.查找缓存列表,Class->offset(16)->cache->_maskAndBuckets->buckets
;
3.在buckets
列表中查询是否有sel == _cmd
,存在则返回,否则进入CheckMiss->__objc_msgSend_uncached->MethodTableLookup->_lookUpImpOrForward
,由此进入慢速查找流程;
开始慢速查找流程:
1.查找curClass
类对象的方法列表,curCls->data()->methods()
(objc_class->class_rw_t->methods()
);
2.通过二分遍历查询当前方法列表中是有sel==_cmd
,如果存在则返回并执行4,否则执行3;
3.将当前的curCls= curCls->superclass
,首先在父类中的cache->_maskAndBuckets->buckets
缓存列表查询(imp = cache_getImp(curCls,sel)
),如果存在,执行4,否则执行1;直到curClass = nil
时,依然没有匹配,跳出循环,执行5;
4.找到目标imp
,添加到缓存列表,并返回;
5.没有找到对应的imp
,进入消息转发流程;消息转发流程