笔记-tensorflow计算accuracy等

2019-01-07  本文已影响0人  科技瞭望台

import tensorflowas tf

def tf_confusion_metrics(predict, real):

predictions = tf.argmax(predict, 1)

actuals = tf.argmax(real, 1)

ones_like_actuals = tf.ones_like(actuals)# 维度和actuals一样的全1的张量

    zeros_like_actuals = tf.zeros_like(actuals)

ones_like_predictions = tf.ones_like(predictions)

zeros_like_predictions = tf.zeros_like(predictions)

tp = tf.reduce_sum(

tf.cast(

tf.logical_and(

tf.equal(actuals, ones_like_actuals),  # 实际值为P

                tf.equal(predictions, ones_like_predictions)# 预测值也为P

            ),

            "float"

        )

)

tn = tf.reduce_sum(

tf.cast(

tf.logical_and(

tf.equal(actuals, zeros_like_actuals),  # 实际值为N

                tf.equal(predictions, zeros_like_predictions)# 预测值为N

            ),

            "float"

        )

)

fp = tf.reduce_sum(

tf.cast(

tf.logical_and(

tf.equal(actuals, zeros_like_actuals),  # 实际值为N

                tf.equal(predictions, ones_like_predictions)# 预测值为P

            ),

            "float"

        )

)

fn = tf.reduce_sum(

tf.cast(

tf.logical_and(

tf.equal(actuals, ones_like_actuals),  # 实际值为P

                tf.equal(predictions, zeros_like_predictions)# 预测值为N

            ),

            "float"

        )

)

return tp, fn, fp, tn

def ACC(P, Y):

tp, fn, fp, tn = tf_confusion_metrics(P, Y)

accuracy = (float(tp) +float(tn)) / (float(tp) +float(fp) +float(fn) +float(tn))

return accuracy

def Precision(P, Y):

tp, fn, fp, tn = tf_confusion_metrics(P, Y)

precision =float(tp) / (float(tp) +float(fp))

return precision

def Recall(P, Y):

tp, fn, fp, tn = tf_confusion_metrics(P, Y)

recall =float(tp) / (float(tp) +float(fn))

return recall

def F1_score(P, Y):

tp, fn, fp, tn = tf_confusion_metrics(P, Y)

precision =float(tp) / (float(tp) +float(fp))

recall =float(tp) / (float(tp) +float(fn))

f1_score = (2 * (precision * recall)) / (precision + recall)

return f1_score

def TPR(P, Y):

tp, fn, fp, tn = tf_confusion_metrics(P, Y)

tpr =float(tp) / (float(tp) +float(fn))

return tpr

def FPR(P, Y):

tp, fn, fp, tn = tf_confusion_metrics(P, Y)

fpr =float(fp) / (float(fp) +float(tn))

return fpr

def FNR(P, Y):

tp, fn, fp, tn = tf_confusion_metrics(P, Y)

fnr =float(fn) / (float(tp) +float(fn))

return fnr

上一篇下一篇

猜你喜欢

热点阅读