代码
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线
# 导入所需模块
import tensorflowas tf
from sklearnimport datasets
from matplotlibimport pyplotas plt
import numpyas np
# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target
# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)# 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]
# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)
# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))
lr =0.1 # 学习率为0.1
train_loss_results = []# 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []# 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch =500 # 循环500轮
loss_all =0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和
# 训练部分
for epochin range(epoch):#数据集级别的循环,每个epoch循环一次数据集
for step, (x_train, y_train)in enumerate(train_db):#batch级别的循环 ,每个step循环一个batch
with tf.GradientTape()as tape:# with结构记录梯度信息
y = tf.matmul(x_train, w1) + b1# 神经网络乘加运算
y = tf.nn.softmax(y)# 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
y_ = tf.one_hot(y_train, depth=3)# 将标签值转换为独热码格式,方便计算loss和accuracy
loss = tf.reduce_mean(tf.square(y_ - y))# 采用均方误差损失函数mse = mean(sum(y-out)^2)
loss_all += loss.numpy()# 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
# 计算loss对各个参数的梯度
grads = tape.gradient(loss, [w1, b1])
# 实现梯度更新w1 = w1 - lr * w1_grad b = b - lr * b_grad
w1.assign_sub(lr * grads[0])# 参数w1自更新
b1.assign_sub(lr * grads[1])# 参数b自更新
# 每个epoch,打印loss信息
print("Epoch {}, loss: {}".format(epoch, loss_all/4))
train_loss_results.append(loss_all /4)# 将4个step的loss求平均记录在此变量中
loss_all =0 # loss_all归零,为记录下一个epoch的loss做准备
# 测试部分
# total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
total_correct, total_number =0, 0
for x_test, y_testin test_db:
# 使用更新后的参数进行预测
y = tf.matmul(x_test, w1) + b1
y = tf.nn.softmax(y)
pred = tf.argmax(y, axis=1)# 返回y中最大值的索引,即预测的分类
# 将pred转换为y_test的数据类型
pred = tf.cast(pred, dtype=y_test.dtype)
# 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
# 将每个batch的correct数加起来
correct = tf.reduce_sum(correct)
# 将所有batch中的correct数加起来
total_correct +=int(correct)
# total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
total_number += x_test.shape[0]
# 总的准确率等于total_correct/total_number
acc = total_correct / total_number
test_acc.append(acc)
print("Test_acc:", acc)
print("--------------------------")
# 绘制 loss 曲线
plt.title('Loss Function Curve')# 图片标题
plt.xlabel('Epoch')# x轴变量名称
plt.ylabel('Loss')# y轴变量名称
plt.plot(train_loss_results, label="$Loss$")# 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()# 画出曲线图标
plt.show()# 画出图像
# 绘制 Accuracy 曲线
plt.title('Acc Curve')# 图片标题
plt.xlabel('Epoch')# x轴变量名称
plt.ylabel('Acc')# y轴变量名称
plt.plot(test_acc, label="$Accuracy$")# 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()