工作生活

数字基带信号的功率谱

2019-07-01  本文已影响0人  艳阳天_cc44

# 循环平稳过程

如果随机过程$X(t)$的均值和自相关函数是以$T$为周期的周期函数,则称其为**循环平稳过程**。对于循环平稳过程,平均自相关函数定义为一个周期上的平均:

$$

\overline{R_X(\tau)}=\frac{1}{T}\int_0^TR_X(t+\tau,t)dt

$$

循环平稳过程的平均功率谱密度定义为平均自相关函数的傅里叶变换。

$$

\mathcal{S}_X(f)=\mathcal{F}\left[\overline{R_X(\tau)}\right]

$$

## 数字基带信号的PSD

假设信号$X(t)=\sum_n a_n g(t-nT_s)$,则其为循环随机平稳过程。假定随机序列$a_n$是平稳过程。则有

$$

\begin{align}

R_X(t+\tau,t)&=\mathbb{E}\left\{\sum_{n=-\infty}^{+\infty}\sum_{m=-\infty}^{+\infty}a_na_m^*g(t+\tau-nT_s)g^*(t-mT_s) \right\} \\

&=\sum_{n=-\infty}^{+\infty}\sum_{m=-\infty}^{+\infty}\mathbb{E}[a_na_m^*]g(t+\tau-nT_s)g^*(t-mT_s) \\

&=\sum_{n=-\infty}^{+\infty}\sum_{m=-\infty}^{+\infty}R_a(n-m)g(t+\tau-nT_s)g^*(t-mT_s) \\

&=\sum_{n=-\infty}^{+\infty}\sum_{m=-\infty}^{+\infty}R_a(n-m)g(t+\tau-(n-m)T_s-mT_s)g^*(t-mT_s) \\

&=\sum_{k=-\infty}^{+\infty}\sum_{m=-\infty}^{+\infty}R_a(k)g(t+\tau-kT_s-mT_s)g^*(t-mT_s)

\end{align}

$$

最后一个公式使用了变量代换$k=n-m$,从而其平均自相关函数为:

$$

\begin{align}

\overline{R_X(\tau)}&=\frac{1}{T_s}\int_0^{T_s}R_X(t+\tau,t)dt \\

&=\frac{1}{T_s}\int_0^{T_s} \sum_{k=-\infty}^{+\infty}\sum_{m=-\infty}^{+\infty}R_a(k)g(t+\tau-kT_s-mT_s)g^*(t-mT_s) dt \\

&=\frac{1}{T_s}\sum_{k=-\infty}^{+\infty}\sum_{m=-\infty}^{+\infty}\int_0^{T_s}R_a(k)g(t+\tau-kT_s-mT_s)g^*(t-mT_s) dt \\

&=\frac{1}{T_s}\sum_{k=-\infty}^{+\infty}\sum_{m=-\infty}^{+\infty}\int_{-mT_s}^{-(m-1)T_s}R_a(k)g(u+\tau-kT_s)g^*(u) du\\

&=\frac{1}{T_s}\sum_{k=-\infty}^{+\infty}\int_{-\infty}^{+\infty}R_a(k)g(u+\tau-kT_s)g^*(u) du \\

&=\frac{1}{T_s}\sum_{k=-\infty}^{+\infty} g_k(\tau-kT_s)

\end{align}

$$

令$g_k(\tau)=\int_{-\infty}^{+\infty}R_a(k)g(u+\tau)g^*(u)du$,则上式的傅里叶变换为:

$$

\frac{1}{T_s}\sum_{n=-\infty}^{+\infty}G_n(f)e^{-j2\pi nfT_s}

$$

则上式的傅里叶变换为:

$$

\begin{align}

G'(f)&=\int_{-\infty}^{+\infty}\overline{R_X(\tau)}e^{-j2\pi f\tau}d\tau \\

&=\frac{1}{T_s}\sum_{k=-\infty}^{+\infty}R_a(k)\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(u+\tau-kT_s)g^*(u)e^{-j2\pi f\tau}du d\tau \\

&=\frac{1}{T_s}\sum_{k=-\infty}^{+\infty}R_a(k)\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(u+\tau-kT_s)g^*(u)e^{j2\pi fu} e^{-j2\pi f(u+\tau-kT_s)} e^{-j2\pi fkT_s} du d\tau \\

&=\frac{1}{T_s}\sum_{k=-\infty}^{+\infty}R_a(k)e^{-j2\pi fkT_s}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(u+\tau-kT_s)g^*(u)e^{j2\pi fu} e^{-j2\pi f(u+\tau-kT_s)}du d\tau \\

&=\frac{1}{T_s}\sum_{k=-\infty}^{+\infty}R_a(k)e^{-j2\pi fkT_s}|G(f)|^2 \\

&=\frac{1}{T_s}\sum_{k=-\infty}^{+\infty}[R_a(k)-R_a(0)]e^{-j2\pi fkT_s}|G(f)|^2 + \frac{R_a(0)}{T_s}|G(f)|^2\sum_{k=-\infty}^{+\infty}e^{-j2\pi fkT_s} \\

&=\frac{1}{T_s}\sum_{k=-\infty}^{+\infty}[R_a(k)-R_a(0)]e^{-j2\pi fkT_s}|G(f)|^2 + \frac{R_a(0)}{T_s}|G(f)|^2\sum_{k=-\infty}^{+\infty}\delta(f+\frac{k}{T_s})

\end{align}

$$

其中

$$

\begin{align}

\overline{R_X(\tau)}&=\frac{1}{T_s}\int_0^{T_s}R_X(t+\tau,t)dt \\

&=\frac{1}{T_s}\int_0^{T_s} \sum_{m=-\infty}^{+\infty}\sum_{n=-\infty}^{+\infty}R_a(n-m)g(t+\tau-nT_s)g^*(t-mT_s) dt \\

&=\frac{1}{T_s}\sum_{m=-\infty}^{+\infty}\sum_{n=-\infty}^{+\infty}R_a(n-m)\int_0^{T_s}g(t+\tau-nT_s)g^*(t-mT_s) dt \\

&=\\

&=\frac{\sigma_a^2}{T_s}\sum_{m=-\infty}^{+\infty}\int_0^{T_s}g(t+\tau-mT_s)g^*(t-mT_s) dt+\frac{m_a^2}{T_s}\sum_{m \neq n}\int_0^{T_s}g(t+\tau-nT_s)g^*(t-mT_s) dt

\end{align}

$$

上式可以拆成两部分,一部分为$n=m$的情况,另一部分不等。相等部分可推得如下结果:

$$

$$

## OQPSK的PSD

假设信号如下:

$$

X(t)=I_n(t)\cos \omega_ct-Q_n(t)\sin\omega_ct

$$

其中$I_n(t)=\sum_n a_n g(t-nT_s),Q_n(t)=\sum_n b_n g(t-nT_s)$则其自相关函数如下:

$$

\begin{align}

R_X(t+\tau,t)&=\mathbb{E}\left\{[I_n(t+\tau)\cos \omega_c(t+\tau)-Q_n(t+\tau)\sin\omega_c(t+\tau)][I_n(t)\cos \omega_ct-Q_n(t)\sin\omega_ct]\right\} \\

&=\mathbb{E}\left\{I_n(t+\tau)I_n(t)\cos\omega_c(t+\tau)\cos\omega_ct\right\}-\mathbb{E}\left\{I_n(t+\tau)Q_n(t)\cos\omega_c(t+\tau)\sin\omega_ct\right\}\\

&-\mathbb{E}\left\{Q_n(t+\tau)I_n(t)\sin\omega_c(t+\tau)\cos\omega_ct\right\}+

\mathbb{E}\left\{Q_n(t+\tau)Q_n(t)\sin\omega_c(t+\tau)\sin\omega_ct\right\}\\

&=R_{II}(\tau)

\end{align}

$$

## 一个有用的结论

上一篇下一篇

猜你喜欢

热点阅读