good code

生存分析,简单粗暴!

2020-07-02  本文已影响0人  小洁忘了怎么分身

生存分析代码的原始版本见:两种方法批量生存分析,这个是R包GDCRNATools给出的简化版。大段代码变成几个函数搞定。

0.R包和数据准备

if(!require(GDCRNATools))BiocManager::install("GDCRNATools")
library(GDCRNATools)
# mRNA 和miRNA的表达矩阵
data(rnaCounts);dim(rnaCounts)
## [1] 1000   45
rnaCounts[1:3,1:3]
##                 TCGA-3X-AAV9-01 TCGA-3X-AAVA-01
## ENSG00000003989            1520             960
## ENSG00000004799            7659             957
## ENSG00000005812            2246            1698
##                 TCGA-3X-AAVB-01
## ENSG00000003989            2177
## ENSG00000004799            2295
## ENSG00000005812            2454
data(mirCounts);dim(mirCounts)
## [1] 2588   45
mirCounts[1:3,1:3]
##                 TCGA-3X-AAV9-01 TCGA-3X-AAVA-01
## hsa-let-7a-5p            165141          132094
## hsa-let-7a-3p               204             169
## hsa-let-7a-2-3p              30              26
##                 TCGA-3X-AAVB-01
## hsa-let-7a-5p            210259
## hsa-let-7a-3p               298
## hsa-let-7a-2-3p              50
#临床信息
metaMatrix.RNA <- gdcParseMetadata(project.id = 'TCGA-CHOL',
                                   data.type  = 'RNAseq',
                                   write.meta = FALSE)
metaMatrix.RNA <- gdcFilterDuplicate(metaMatrix.RNA)
metaMatrix.RNA <- gdcFilterSampleType(metaMatrix.RNA) 
metaMatrix.RNA[1:4,1:4]
##                                                             file_name
## TCGA-3X-AAV9-01A 725eaa94-5221-4c22-bced-0c36c10c2c3b.htseq.counts.gz
## TCGA-3X-AAVA-01A b6a2c03a-c8ad-41e9-8a19-8f5ac53cae9f.htseq.counts.gz
## TCGA-3X-AAVB-01A c2765336-c804-4fd2-b45a-e75af2a91954.htseq.counts.gz
## TCGA-3X-AAVC-01A 8b20cba8-9fd5-4d56-bd02-c6f4a62767e8.htseq.counts.gz
##                                               file_id
## TCGA-3X-AAV9-01A 85bc7f81-51fb-4446-b12d-8741eef4acee
## TCGA-3X-AAVA-01A 42b8d463-6209-4ea0-bb01-8023a1302fa0
## TCGA-3X-AAVB-01A 6e2031e9-df75-48df-b094-8dc6be89bf8b
## TCGA-3X-AAVC-01A 19e8fd21-f6c8-49b0-aa76-109eef46c2e9
##                       patient          sample
## TCGA-3X-AAV9-01A TCGA-3X-AAV9 TCGA-3X-AAV9-01
## TCGA-3X-AAVA-01A TCGA-3X-AAVA TCGA-3X-AAVA-01
## TCGA-3X-AAVB-01A TCGA-3X-AAVB TCGA-3X-AAVB-01
## TCGA-3X-AAVC-01A TCGA-3X-AAVC TCGA-3X-AAVC-01
rnaExpr <- gdcVoomNormalization(counts = rnaCounts, filter = FALSE)
mirExpr <- gdcVoomNormalization(counts = mirCounts, filter = FALSE)

1.差异分析

table(metaMatrix.RNA$sample_type)
## 
##      PrimaryTumor SolidTissueNormal 
##                36                 9
DEGAll <- gdcDEAnalysis(counts     = rnaCounts, 
                        group      = metaMatrix.RNA$sample_type, 
                        comparison = 'PrimaryTumor-SolidTissueNormal', 
                        method     = 'limma');dim(DEGAll)
## [1] 565   8
head(DEGAll)
##                  symbol          group     logFC   AveExpr
## ENSG00000143257   NR1I3 protein_coding -6.916825  7.023129
## ENSG00000205707  ETFRF1 protein_coding -2.492182  9.515997
## ENSG00000134532    SOX5 protein_coding -4.871118  6.228227
## ENSG00000141338   ABCA8 protein_coding -5.653794  7.520581
## ENSG00000066583   ISOC1 protein_coding -2.370131 10.466194
## ENSG00000164188 RANBP3L protein_coding -5.624376  4.356284
##                         t       PValue          FDR        B
## ENSG00000143257 -17.29086 4.244355e-22 2.419282e-19 40.04288
## ENSG00000205707 -16.06753 8.353256e-21 2.380678e-18 37.19751
## ENSG00000134532 -15.03589 1.168746e-19 2.220617e-17 34.49828
## ENSG00000141338 -14.86069 1.851519e-19 2.638414e-17 34.11581
## ENSG00000066583 -14.56532 4.053959e-19 4.621513e-17 33.35640
## ENSG00000164188 -14.22477 1.013592e-18 9.629125e-17 32.25659

可以获取全部差异基因,也可以单独获取mRNA和lncRNA的差异分析结果

deALL <- gdcDEReport(deg = DEGAll, gene.type = 'all');dim(deALL)
## [1] 283   8
deLNC <- gdcDEReport(deg = DEGAll, gene.type = 'long_non_coding');dim(deLNC)
## [1] 47  8
dePC <- gdcDEReport(deg = DEGAll, gene.type = 'protein_coding');dim(dePC)
## [1] 222   8

2.任意两个基因的相关性图

gdcCorPlot(gene1    = 'ENSG00000003989', 
           gene2    = 'ENSG00000004799', 
           rna.expr = rnaExpr, 
           metadata = metaMatrix.RNA)

3.生存分析

支持两种方法:CoxPH和KM,基于survival包,函数是gdcSurvivalAnalysis()

CoxPH analysis

####### CoxPH analysis #######
survOutput <- gdcSurvivalAnalysis(gene     = rownames(deALL), 
                                  method   = 'coxph', 
                                  rna.expr = rnaExpr, 
                                  metadata = metaMatrix.RNA)
table(survOutput$pValue<0.05)

KM analysis

####### KM analysis #######
survOutput <- gdcSurvivalAnalysis(gene     = rownames(deALL), 
                                  method   = 'KM', 
                                  rna.expr = rnaExpr, 
                                  metadata = metaMatrix.RNA, 
                                  sep      = 'median')
table(as.numeric(as.character(survOutput$pValue))<0.05)

KM plot

gdcKMPlot(gene     = 'ENSG00000003989',
          rna.expr = rnaExpr,
          metadata = metaMatrix.RNA,
          sep      = 'median')
上一篇下一篇

猜你喜欢

热点阅读