Spark 应用sparkSpark深入学习

深入理解Spark 2.1 Core (七):任务执行的原理与源

2017-04-20  本文已影响248人  033a1d1f0c58

上篇博文《深入理解Spark 2.1 Core (六):资源调度的实现与源码分析》中我们讲解了,AppClient和Executor是如何启动,如何为逻辑上与物理上的资源调度,以及分析了在Spark1.4之前逻辑上资源调度算法的bug。

这篇博文,我们就来讲讲Executor启动后,是如何在Executor上执行Task的,以及其后续处理。

执行Task

我们在《深入理解Spark 2.1 Core (三):任务调度器的原理与源码分析 》中提到了,任务调度完成后,CoarseGrainedSchedulerBackend.DriverEndpoint会调用launchTasks向CoarseGrainedExecutorBackend发送带着serializedTask的LaunchTask信号。接下来,我们就来讲讲CoarseGrainedExecutorBackend接收到LaunchTask信号后,是如何执行Task的。

调用栈如下:

CoarseGrainedExecutorBackend.receive

    case LaunchTask(data) =>
      if (executor == null) {
        exitExecutor(1, "Received LaunchTask command but executor was null")
      } else {
        // 反序列话task描述
        val taskDesc = ser.deserialize[TaskDescription](data.value)  
        logInfo("Got assigned task " + taskDesc.taskId)
        // 调用executor.launchTask
        executor.launchTask(this, taskId = taskDesc.taskId, attemptNumber = taskDesc.attemptNumber,
          taskDesc.name, taskDesc.serializedTask)
      }

Executor.launchTask

  def launchTask(
      context: ExecutorBackend,
      taskId: Long,
      attemptNumber: Int,
      taskName: String,
      serializedTask: ByteBuffer): Unit = {
      // 创建TaskRunner
    val tr = new TaskRunner(context, taskId = taskId, attemptNumber = attemptNumber, taskName,
      serializedTask)
      // 把taskID 以及 对应的 TaskRunner,
      // 加入到 ConcurrentHashMap[Long, TaskRunner]
    runningTasks.put(taskId, tr)
    // 线程池 执行 TaskRunner
    threadPool.execute(tr)
  }

Executor.TaskRunner.run

    override def run(): Unit = {
      val threadMXBean = ManagementFactory.getThreadMXBean
      val taskMemoryManager = new TaskMemoryManager(env.memoryManager, taskId)
      // 记录开始反序列化的时间
      val deserializeStartTime = System.currentTimeMillis()
      // 记录开始反序列化的时的Cpu时间
      val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
        threadMXBean.getCurrentThreadCpuTime
      } else 0L
      Thread.currentThread.setContextClassLoader(replClassLoader)
      val ser = env.closureSerializer.newInstance()
      logInfo(s"Running $taskName (TID $taskId)")
      execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER)
      var taskStart: Long = 0
      var taskStartCpu: Long = 0
      // 开始GC的时间
      startGCTime = computeTotalGcTime()

      try {
       //反序列化任务信息
        val (taskFiles, taskJars, taskProps, taskBytes) =
          Task.deserializeWithDependencies(serializedTask)

       // 根据taskProps设置executor属性
        Executor.taskDeserializationProps.set(taskProps)
       // 根据taskFiles和taskJars,
       // 下载任务所需的File 和 加载所需的Jar包
        updateDependencies(taskFiles, taskJars)
       // 根据taskBytes生成task
        task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)
        //设置task属性
        task.localProperties = taskProps
        //设置task内存管理
        task.setTaskMemoryManager(taskMemoryManager)

        // 若在反序列话之前Task就被kill了,
        // 抛出异常
        if (killed) {
          throw new TaskKilledException
        }

        logDebug("Task " + taskId + "'s epoch is " + task.epoch)
        //更新mapOutputTracker Epoch 为task epoch
        env.mapOutputTracker.updateEpoch(task.epoch)

        // 记录任务开始时间
        taskStart = System.currentTimeMillis()
        // 记录任务开始时的cpu时间
        taskStartCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
          threadMXBean.getCurrentThreadCpuTime
        } else 0L
        var threwException = true
        val value = try {
        // 运行Task
          val res = task.run(
            taskAttemptId = taskId,
            attemptNumber = attemptNumber,
            metricsSystem = env.metricsSystem)
          threwException = false
          res
        } finally {
          val releasedLocks = env.blockManager.releaseAllLocksForTask(taskId)
          val freedMemory = taskMemoryManager.cleanUpAllAllocatedMemory()

          if (freedMemory > 0 && !threwException) {
            val errMsg = s"Managed memory leak detected; size = $freedMemory bytes, TID = $taskId"
            if (conf.getBoolean("spark.unsafe.exceptionOnMemoryLeak", false)) {
              throw new SparkException(errMsg)
            } else {
              logWarning(errMsg)
            }
          }

          if (releasedLocks.nonEmpty && !threwException) {
            val errMsg =
              s"${releasedLocks.size} block locks were not released by TID = $taskId:\n" +
                releasedLocks.mkString("[", ", ", "]")
            if (conf.getBoolean("spark.storage.exceptionOnPinLeak", false)) {
              throw new SparkException(errMsg)
            } else {
              logWarning(errMsg)
            }
          }
        }
        // 记录任务结束时间
        val taskFinish = System.currentTimeMillis()
        // 记录任务结束时的cpu时间
        val taskFinishCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
          threadMXBean.getCurrentThreadCpuTime
        } else 0L

        // 若task在运行中被kill了
        // 则抛出异常
        if (task.killed) {
          throw new TaskKilledException
        }

       
        val resultSer = env.serializer.newInstance()
        // 结果记录序列化开始的系统时间
        val beforeSerialization = System.currentTimeMillis()
        // 序列化结果
        val valueBytes = resultSer.serialize(value)
        // 结果记录序列化完成的系统时间
        val afterSerialization = System.currentTimeMillis()

        // 反序列话发生在两个地方:
        // 1. 在该函数下反序列化Task信息以及Task实例。
        // 2. 在任务启动后,Task.run 反序列化 RDD 和 函数

        // 计算task的反序列化费时
        task.metrics.setExecutorDeserializeTime(
          (taskStart - deserializeStartTime) + task.executorDeserializeTime)
        // 计算task的反序列化cpu费时
        task.metrics.setExecutorDeserializeCpuTime(
          (taskStartCpu - deserializeStartCpuTime) + task.executorDeserializeCpuTime)
        // 计算task运行费时
        task.metrics.setExecutorRunTime((taskFinish - taskStart) - task.executorDeserializeTime)
        // 计算task运行cpu费时
        task.metrics.setExecutorCpuTime(
          (taskFinishCpu - taskStartCpu) - task.executorDeserializeCpuTime)
         // 计算GC时间
        task.metrics.setJvmGCTime(computeTotalGcTime() - startGCTime)
        
         //计算结果序列化时间 
        task.metrics.setResultSerializationTime(afterSerialization - beforeSerialization)

 
        val accumUpdates = task.collectAccumulatorUpdates()
        // 这里代码存在缺陷:
        // value相当于被序列化了两次
        val directResult = new DirectTaskResult(valueBytes, accumUpdates)
        val serializedDirectResult = ser.serialize(directResult)
        // 得到结果的大小
        val resultSize = serializedDirectResult.limit

       // 对于计算结果,会根据结果的大小有不同的策略:
       // 1.生成结果在(正无穷,1GB):
       // 超过1GB的部分结果直接丢弃,
       // 可以通过spark.driver.maxResultSize实现
       // 默认为1G
       // 2.生成结果大小在$[1GB,128MB - 200KB]
       // 会把该结果以taskId为编号存入BlockManager中,
       // 然后把该编号通过Netty发送给Driver,
       // 该阈值是Netty框架传输的最大值
       // spark.akka.frameSize(默认为128MB)和Netty的预留空间reservedSizeBytes(200KB)的差值
       // 3.生成结果大小在(128MB - 200KB,0):
       // 直接通过Netty发送到Driver
        val serializedResult: ByteBuffer = {
          if (maxResultSize > 0 && resultSize > maxResultSize) {
            logWarning(s"Finished $taskName (TID $taskId). Result is larger than maxResultSize " +
              s"(${Utils.bytesToString(resultSize)} > ${Utils.bytesToString(maxResultSize)}), " +
              s"dropping it.")
            ser.serialize(new IndirectTaskResult[Any](TaskResultBlockId(taskId), resultSize))
          } else if (resultSize > maxDirectResultSize) {
            val blockId = TaskResultBlockId(taskId)
            env.blockManager.putBytes(
              blockId,
              new ChunkedByteBuffer(serializedDirectResult.duplicate()),
              StorageLevel.MEMORY_AND_DISK_SER)
            logInfo(
              s"Finished $taskName (TID $taskId). $resultSize bytes result sent via BlockManager)")
            ser.serialize(new IndirectTaskResult[Any](blockId, resultSize))
          } else {
            logInfo(s"Finished $taskName (TID $taskId). $resultSize bytes result sent to driver")
            serializedDirectResult
          }
        }
        // 更新execBackend 状态
        execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)

      } catch {
        case ffe: FetchFailedException =>
          val reason = ffe.toTaskFailedReason
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))

        case _: TaskKilledException =>
          logInfo(s"Executor killed $taskName (TID $taskId)")
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate(taskId, TaskState.KILLED, ser.serialize(TaskKilled))

        case _: InterruptedException if task.killed =>
          logInfo(s"Executor interrupted and killed $taskName (TID $taskId)")
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate(taskId, TaskState.KILLED, ser.serialize(TaskKilled))

        case CausedBy(cDE: CommitDeniedException) =>
          val reason = cDE.toTaskFailedReason
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))

        case t: Throwable =>
          logError(s"Exception in $taskName (TID $taskId)", t)

          val accums: Seq[AccumulatorV2[_, _]] =
            if (task != null) {
              task.metrics.setExecutorRunTime(System.currentTimeMillis() - taskStart)
              task.metrics.setJvmGCTime(computeTotalGcTime() - startGCTime)
              task.collectAccumulatorUpdates(taskFailed = true)
            } else {
              Seq.empty
            }

          val accUpdates = accums.map(acc => acc.toInfo(Some(acc.value), None))

          val serializedTaskEndReason = {
            try {
              ser.serialize(new ExceptionFailure(t, accUpdates).withAccums(accums))
            } catch {
              case _: NotSerializableException =>
                ser.serialize(new ExceptionFailure(t, accUpdates, false).withAccums(accums))
            }
          }
          setTaskFinishedAndClearInterruptStatus()
          execBackend.statusUpdate(taskId, TaskState.FAILED, serializedTaskEndReason)

          if (Utils.isFatalError(t)) {
            SparkUncaughtExceptionHandler.uncaughtException(t)
          }

      } finally {
      // 任务结束后移除
        runningTasks.remove(taskId)
      }
    }

Executor.updateDependencies

接下来,我们来看看更新executor的依赖,即下载任务所需的File和加载所需的Jar包:

  private def updateDependencies(newFiles: HashMap[String, Long], newJars: HashMap[String, Long]) {
    lazy val hadoopConf = SparkHadoopUtil.get.newConfiguration(conf)
    synchronized {
      // 下载任务所需的File
      for ((name, timestamp) <- newFiles if currentFiles.getOrElse(name, -1L) < timestamp) {
        logInfo("Fetching " + name + " with timestamp " + timestamp)
        Utils.fetchFile(name, new File(SparkFiles.getRootDirectory()), conf,
          env.securityManager, hadoopConf, timestamp, useCache = !isLocal)
        currentFiles(name) = timestamp
      }
      // 加载所需的Jar包
      for ((name, timestamp) <- newJars) {
        val localName = name.split("/").last
        val currentTimeStamp = currentJars.get(name)
          .orElse(currentJars.get(localName))
          .getOrElse(-1L)
        if (currentTimeStamp < timestamp) {
          logInfo("Fetching " + name + " with timestamp " + timestamp)
          Utils.fetchFile(name, new File(SparkFiles.getRootDirectory()), conf,
            env.securityManager, hadoopConf, timestamp, useCache = !isLocal)
          currentJars(name) = timestamp
          // 把它加入到 class loader
          val url = new File(SparkFiles.getRootDirectory(), localName).toURI.toURL
          if (!urlClassLoader.getURLs().contains(url)) {
            logInfo("Adding " + url + " to class loader")
            urlClassLoader.addURL(url)
          }
        }
      }
    }
  }

Task.run

接下来,我们来看看这篇博文最核心的部分——task运行:

  final def run(
      taskAttemptId: Long,
      attemptNumber: Int,
      metricsSystem: MetricsSystem): T = {
    SparkEnv.get.blockManager.registerTask(taskAttemptId)
    //创建TaskContextImpl
    context = new TaskContextImpl(
      stageId,
      partitionId,
      taskAttemptId,
      attemptNumber,
      taskMemoryManager,
      localProperties,
      metricsSystem,
      metrics)
      //在TaskContext中设置TaskContextImpl
    TaskContext.setTaskContext(context)
    taskThread = Thread.currentThread()

    if (_killed) {
      kill(interruptThread = false)
    }

    new CallerContext("TASK", appId, appAttemptId, jobId, Option(stageId), Option(stageAttemptId),
      Option(taskAttemptId), Option(attemptNumber)).setCurrentContext()

    try {
    // 调用runTask
      runTask(context)
    } catch {
      case e: Throwable =>
        try {
          context.markTaskFailed(e)
        } catch {
          case t: Throwable =>
            e.addSuppressed(t)
        }
        throw e
    } finally {
      // 标记Task完成
      context.markTaskCompleted()
      try {
        Utils.tryLogNonFatalError {
          // 释放内存
          SparkEnv.get.blockManager.memoryStore.releaseUnrollMemoryForThisTask(MemoryMode.ON_HEAP)
          SparkEnv.get.blockManager.memoryStore.releaseUnrollMemoryForThisTask(MemoryMode.OFF_HEAP)
          val memoryManager = SparkEnv.get.memoryManager
          memoryManager.synchronized { memoryManager.notifyAll() }
        }
      } finally {
      //取消TaskContext设置
        TaskContext.unset()
      }
    }
  }

Task有两个子类,一个是非最后的Stage的Task,ShuffleMapTask;一个是最后的Stage的Task,ResultTask。它们都覆盖了Task的runTask方法,接下来我们就分别来讲下它们的runTask方法。

ShuffleMapTask.runTask

根据每个Stage的partition数量来生成ShuffleMapTask,ShuffleMapTask会根据下游的Partition数量和Shuffle的策略来生成一系列文件。

  override def runTask(context: TaskContext): MapStatus = {

    val threadMXBean = ManagementFactory.getThreadMXBean
    // 记录反序列化开始时间
    val deserializeStartTime = System.currentTimeMillis()
    // 记录反序列化开始时的Cpu时间
    val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
      threadMXBean.getCurrentThreadCpuTime
    } else 0L
    val ser = SparkEnv.get.closureSerializer.newInstance()
    // 反序列化rdd 及其 依赖
    val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
      // 计算 反序列化费时
    _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
    // 计算 反序列化Cpu费时
    _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
      threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
    } else 0L

    var writer: ShuffleWriter[Any, Any] = null
    try {
    //获取shuffleManager
      val manager = SparkEnv.get.shuffleManager
    // writer
      writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
     // 调用writer.write 开始计算RDD,
     // 这部分 我们会在后续博文讲解
      writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
      // 停止计算,并返回结果
      writer.stop(success = true).get
    } catch {
      case e: Exception =>
        try {
          if (writer != null) {
            writer.stop(success = false)
          }
        } catch {
          case e: Exception =>
            log.debug("Could not stop writer", e)
        }
        throw e
    }
  }

ResultTask.runTask

  override def runTask(context: TaskContext): U = {
    val threadMXBean = ManagementFactory.getThreadMXBean
    // 记录反序列化开始时间
    val deserializeStartTime = System.currentTimeMillis()
    // 记录反序列化开始时的Cpu时间
    val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
      threadMXBean.getCurrentThreadCpuTime
    } else 0L
    val ser = SparkEnv.get.closureSerializer.newInstance()
    // 反序列化rdd 及其 作用于RDD的结果函数
    val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
      // 计算 反序列化费时
    _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
    // 计算 反序列化Cpu费时
    _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
      threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
    } else 0L
    // 这部分 我们会在后续博文讲解
    func(context, rdd.iterator(partition, context))
  }

后续处理

计量统计

对各个费时的统计,上章已经讲解。

回收内存

这在上章Task.run也已经讲解。

处理执行结果

Executor.TaskRunner.run的execBackend.statusUpdate,在《深入理解Spark 2.1 Core (四):运算结果处理和容错的原理与源码分析 》中我们已经讲解过。

上一篇下一篇

猜你喜欢

热点阅读