R语言机器学习

R机器学习mlr3:开篇

2022-09-15  本文已影响0人  医学和生信笔记

mlr3简介

mlr3包和其扩展包为R语言提供了一个统一的、面向对象的、可扩展的机器学习框架,可用于回归、分类、生存分析和其他机器学习任务。mlr3并没有引入新的机器学习算法,而是为R中的机器学习R包通过了统一的接口,通过这个统一的接口,用户可以创建任务、选择合适的参数、进行大规模的模型比较等。原生支持多个步骤的并行化操作。

目标群体

我们希望mlr3使用者具有基本的R语言和机器学习知识,本教程的后面一些内容将会介绍更高级的知识。mlr3既适合复杂的大型任务,也可以用于简单的任务。

mlr3既适合相关从业人员快速进行机器学习算法,也适合于研究人员在统一的环境中实施、测试、比较新的算法。mlr3包是mlr包的重写,吸收了最先进的经验,易于使用和扩展。

为什么重写?

mlr于2013年上架CRAN,目前已逐渐落伍,许多特性已不适合目前复杂的任务需求。另外许多非常棒的R包已逐渐发展成熟,比如data.table,因此我们希望开发一个新的R包,它可以提供统一的接口,可适应多种不同的复杂任务场景,基于最先进的机器学习经验,速度足够快!因此mlr3诞生了,它有很多新的特性,比如R6/future/data.table

设计理念

mlr3生态

以上所有R包都是很成熟的,都是经过精心挑选的,不存在依赖性问题。对于更好的功能实现我们建议暗转以下R包:

mlr3包只提供基础的机器学习框架,对于更多的操作和更复杂的任务,可参考以下mlr3生态:

image.png
上一篇下一篇

猜你喜欢

热点阅读