012-数据结构与算法-图
2020-05-06 本文已影响0人
沉默Coder
什么是图 ?
前面总结了“树”这种数据结构,而这篇博客总结的是更为复杂的一种数据结构:图(graph),它表明了物件与物件之间的“多对多”的一种复杂关系。图包含了两个基本元素:顶点(vertex, 简称V)和边(edge,简称E)。
图
有向图和无向图
无向图有向图
如果给图的每条边规定一个方向,那么得到的图称为有向图。在有向图中,从一个顶点出发的边数称为该点的出度,而指向一个顶点的边数称为该点的入度。相反,边没有方向的图称为无向图。
有权图和无权图
如果图中的边有各自的权重,得到的图是有权图。比如地铁路线图,连接两站的边的权重可以是距离,也可以是价格,或者其他。反之,如果图的边没有权重,或者权重都一样(即没有区分),称为无权图
连通图和非连通图
如果图中任意两点都是连通的,那么图被称作连通图。如果存在一个或多个点和其他的顶点没有连通,那么图被称为非连通图
图的存储
- 邻接矩阵
- 邻接表
邻接矩阵
邻接矩阵typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef char VertexType; /* 顶点类型应由用户定义 */
typedef int EdgeType; /* 边上的权值类型应由用户定义 */
typedef struct
{
VertexType vexs[MAXVEX]; /* 顶点表 */
EdgeType arc[MAXVEX][MAXVEX];/* 邻接矩阵,可看作边表 */
int numNodes, numEdges; /* 图中当前的顶点数和边数 */
}MGraph;
以上的代码就定义好了一个图形结构,下面我们再使用邻接表定义一个图形存储结构
邻接表
邻接表需要注意的是:这里的next指针所指向的顶点并不代表和当前顶点有联系,比如说从V0开始,v0和v1,v2,v3分别相连,但是v1的next指针指向了v2顶点,并不代表v1和v2相关联
仅仅表示,这条链表上的所有元素都和v0相关联
typedef char Element;
typedef int BOOL;
//邻接表的节点
typedef struct Node{
int adj_vex_index; //弧头的下标,也就是被指向的下标
Element data; //权重值
struct Node * next; //边指针
}EdgeNode;
//顶点节点表
typedef struct vNode{
Element data; //顶点的权值
EdgeNode * firstedge; //顶点下一个是谁?
}VertexNode, Adjlist[M];
//总图的一些信息
typedef struct Graph{
Adjlist adjlist; //顶点表
int arc_num; //边的个数
int node_num; //节点个数
BOOL is_directed; //是不是有向图
}Graph, *GraphLink;
图的遍历
- 深度优先遍历
- 广度优先遍历
深度优先遍历(邻接矩阵实现)
图广度优先遍历
邻接矩阵深度优先遍历代码实现思路:
- 将图的顶点和边信息输⼊到图结构中;
- 创建⼀个visited 数组,⽤用来标识顶点是否已经被遍历过.
- 初始化visited 数组,将数组中元素置为FALSE
- 选择顶点开始遍历.(注意非连通图的情况)
- 进入递归; 打印i 对应的顶点信息. 并将该顶点标识为已遍历.
- 循环遍历边表,判断当前arc[i][j] 是否等于1,并且当前该顶点没有被遍历过,则继续递归 DFS;
代码实现:
/*4.2 DFS遍历*/
Boolean visited[MAXVEX]; /* 访问标志的数组 */
//1. 标识顶点是否被标记过;
//2. 选择从某一个顶点开始(注意:非连通图的情况)
//3. 进入递归,打印i点信息,标识; 边表
//4. [i][j] 是否等于1,没有变遍历过visted
void DFS(MGraph G,int i){
//1.
visited[i] = TRUE;
printf("%c",G.vexs[i]);
//2.0~numVertexes
for(int j = 0; j < G.numVertexes;j++){
if(G.arc[i][j] == 1 && !visited[j])
DFS(G, j);
}
}
void DFSTravese(MGraph G){
//1.初始化
for(int i=0;i<G.numVertexes;i++){
visited[i] = FALSE;
}
//2.某一个顶点
for(int i = 0;i<G.numVertexes;i++){
if(!visited[i]){
DFS(G, i);
}
}
}
深度优先遍历(邻接表实现)
Boolean visited[MAXSIZE]; /* 访问标志的数组 */
/* 邻接表的深度优先递归算法 */
void DFS(GraphAdjList GL, int i)
{
EdgeNode *p;
visited[i] = TRUE;
//2.打印顶点 A
printf("%c ",GL->adjList[i].data);
p = GL->adjList[i].firstedge;
//3.
while (p) {
if(!visited[p->adjvex])
DFS(GL,p->adjvex);
p = p->next;
}
}
/* 邻接表的深度遍历操作 */
void DFSTraverse(GraphAdjList GL)
{
//1. 将访问记录数组默认置为FALSE
for (int i = 0; i < GL->numVertexes; i++) {
/*初始化所有顶点状态都是未访问过的状态*/
visited[i] = FALSE;
}
//2. 选择一个顶点开始DFS遍历. 例如A
for(int i = 0; i < GL->numVertexes; i++)
//对未访问过的顶点调用DFS, 若是连通图则只会执行一次.
if(!visited[i])
DFS(GL, i);
}
图的广度优先遍历(邻接矩阵实现)
- 把根节点放到队列的末尾。
- 每次从队列的头部取出一个元素,查看这个元素所有的下一级元素,把它们放到队
列的末尾。并把这个元素记为它下一级元素的前驱。 - 找到所要找的元素时结束程序。
- 如果遍历整个树还没有找到,结束程序.
/* 循环队列的顺序存储结构 */
typedef struct
{
int data[MAXSIZE];
int front; /* 头指针 */
int rear; /* 尾指针,若队列不空,指向队列尾元素的下一个位置 */
}Queue;
/* 初始化一个空队列Q */
Status InitQueue(Queue *Q)
{
Q->front=0;
Q->rear=0;
return OK;
}
/* 若队列Q为空队列,则返回TRUE,否则返回FALSE */
Status QueueEmpty(Queue Q)
{
if(Q.front==Q.rear) /* 队列空的标志 */
return TRUE;
else
return FALSE;
}
/* 若队列未满,则插入元素e为Q新的队尾元素 */
Status EnQueue(Queue *Q,int e)
{
if ((Q->rear+1)%MAXSIZE == Q->front) /* 队列满的判断 */
return ERROR;
Q->data[Q->rear]=e; /* 将元素e赋值给队尾 */
Q->rear=(Q->rear+1)%MAXSIZE;/* rear指针向后移一位置, */
/* 若到最后则转到数组头部 */
return OK;
}
/* 若队列不空,则删除Q中队头元素,用e返回其值 */
Status DeQueue(Queue *Q,int *e)
{
if (Q->front == Q->rear) /* 队列空的判断 */
return ERROR;
*e=Q->data[Q->front]; /* 将队头元素赋值给e */
Q->front=(Q->front+1)%MAXSIZE; /* front指针向后移一位置, */
/* 若到最后则转到数组头部 */
return OK;
}
/******** Queue End **************/
/*4.3 邻接矩阵广度优先遍历-代码实现*/
Boolean visited[MAXVEX]; /* 访问标志的数组 */
void BFSTraverse(MGraph G){
int temp = 0;
//1.
Queue Q;
InitQueue(&Q);
//2.将访问标志数组全部置为"未访问状态FALSE"
for (int i = 0 ; i < G.numVertexes; i++) {
visited[i] = FALSE;
}
//3.对遍历邻接表中的每一个顶点(对于连通图只会执行1次,这个循环是针对非连通图)
for (int i = 0 ; i < G.numVertexes; i++) {
if(!visited[i]){
visited[i] = TRUE;
printf("%c ",G.vexs[i]);
//4. 入队
EnQueue(&Q, i);
while (!QueueEmpty(Q)) {
//出队
DeQueue(&Q, &i);
for (int j = 0; j < G.numVertexes; j++) {
if(G.arc[i][j] == 1 && !visited[j])
{
visited[j] = TRUE;
printf("%c ",G.vexs[j]);
EnQueue(&Q, j);
}
}
}
}
}
}
图的广度优先遍历(邻接表实现)
/*
5.2 ***需要用到的队列结构与相关功能函数***
*/
/* 循环队列的顺序存储结构 */
typedef struct
{
int data[MAXSIZE];
int front; /* 头指针 */
int rear; /* 尾指针,若队列不空,指向队列尾元素的下一个位置 */
}Queue;
/* 初始化一个空队列Q */
Status InitQueue(Queue *Q)
{
Q->front=0;
Q->rear=0;
return OK;
}
/* 若队列Q为空队列,则返回TRUE,否则返回FALSE */
Status QueueEmpty(Queue Q)
{
if(Q.front==Q.rear) /* 队列空的标志 */
return TRUE;
else
return FALSE;
}
/* 若队列未满,则插入元素e为Q新的队尾元素 */
Status EnQueue(Queue *Q,int e)
{
if ((Q->rear+1)%MAXSIZE == Q->front) /* 队列满的判断 */
return ERROR;
Q->data[Q->rear]=e; /* 将元素e赋值给队尾 */
Q->rear=(Q->rear+1)%MAXSIZE;/* rear指针向后移一位置, */
/* 若到最后则转到数组头部 */
return OK;
}
/* 若队列不空,则删除Q中队头元素,用e返回其值 */
Status DeQueue(Queue *Q,int *e)
{
if (Q->front == Q->rear) /* 队列空的判断 */
return ERROR;
*e=Q->data[Q->front]; /* 将队头元素赋值给e */
Q->front=(Q->front+1)%MAXSIZE; /* front指针向后移一位置, */
/* 若到最后则转到数组头部 */
return OK;
}
/* *********************** Queue End ******************************* */
/*5.3 邻接表广度优先遍历*/
Boolean visited[MAXSIZE]; /* 访问标志的数组 */
void BFSTraverse(GraphAdjList GL){
//1.创建结点
EdgeNode *p;
Queue Q;
InitQueue(&Q);
//2.将访问标志数组全部置为"未访问状态FALSE"
for(int i = 0; i < GL->numVertexes; i++)
visited[i] = FALSE;
//3.对遍历邻接表中的每一个顶点(对于连通图只会执行1次,这个循环是针对非连通图)
for(int i = 0 ;i < GL->numVertexes;i++){
//4.判断当前结点是否被访问过.
if(!visited[i]){
visited[i] = TRUE;
//打印顶点
printf("%c ",GL->adjList[i].data);
EnQueue(&Q, i);
while (!QueueEmpty(Q)) {
DeQueue(&Q, &i);
p = GL->adjList[i].firstedge;
while (p) {
//判断
if(!visited[p->adjvex]){
visited[p->adjvex] = TRUE;
printf("%c ",GL->adjList[p->adjvex].data);
EnQueue(&Q, p->adjvex);
}
p = p->next;
}
}
}
}
}