TensorFlow笔记我爱编程

Tensorflow 入门

2017-05-01  本文已影响96人  风驰电掣一瓜牛

基本用法

入门的第一步是了解Tensorflow中的一些基本概念和术语。(参考地址

MNIST分类实验

官网用MNIST手写数字分类这个实验来说明TensorFlow的用法。

MNIST数据集

Softmax Regression: 一个线性层

具体代码:

import tensorflow as tf
# placeholder 占位符:TensorFlow运行某一计算时根据该占位符输入具体的
# None表示此张量的第一个维度可以是任何长度
x = tf.placeholder(tf.float32, [None, 784])
# 一个Variable代表一个可修改的张量,代表着TensorFlow计算图中的一个值
# 模型参数一般用Variable来表示
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# 实现模型
# 把向量化后的图片x和权重矩阵W相乘,加上偏置b,然后计算每个分类的softmax概率值
y = tf.nn.softmax(tf.matmul(x, W) + b)
# 训练模型:需要定义指标,即损失函数,这里选择交叉熵
# tf.reduce_sum 计算张量的所有元素的总和
# 实际计算用这个函数:softmax_cross_entropy_with_logits on tf.matmul(x, W) + b)
y_ = tf.placeholder("float", [None,10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
# 梯度下降算法,学习率为0.5
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# 添加初始化变量的操作
init = tf.global_variables_initializer()
# 创建Session启动我们的模型
sess = tf.Session()
sess.run(init)
# 开始训练,迭代1000次
# 每次迭代,我们都会随机抓取训练数据中的100个批处理数据点
# 然后我们用这些数据点作为参数替换之前的占位符来运行train_step
for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# 评估模型
# tf.argmax 返回tensor对象在某一维上最大值所在的索引值
# tf.argmax(y,1) 返回预测的类标
# tf.argmax(y_,1) 返回真实的类标
# correct_prediction 是一个布尔值向量
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

这个模型的准确率只有92%

Softmax Regression: 多层卷积网络

权重初始化

# 加入少量的噪声来打破对称性以及避免0梯度
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

# 由于我们使用的是ReLU神经元,因此比较好的做法是用一个较小的正数来初始化偏置项  
def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)

卷积和池化

def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')

第一层卷积

它由一个卷积接一个max pooling完成。卷积在每个5x5的patch中算出32个特征。
前两个维度是patch的大小,接着是输入通道(input channel)数目,最后是输出通道数目。 而对于每一个输出通道都有一个对应的偏置量。

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

为了用这一层,我们把x变成一个4d向量,其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数(因为是灰度图所以这里的通道数为1,如果是rgb彩色图,则为3)。

x_image = tf.reshape(x, [-1,28,28,1])

我们把x_image和权值向量进行卷积,加上偏置项,然后应用ReLU激活函数,最后进行max pooling

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

第二层卷积

为了构建一个更深的网络,我们会把几个类似的层堆叠起来。第二层中,每个5x5的patch会得到64个特征。

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

密集连接层

现在,图片尺寸减小到7x7,我们加入一个有1024个神经元的全连接层,用于处理整个图片。我们把池化层输出的张量reshape成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU。

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

为了减少过拟合,我们在输出层之前加入dropout

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

输出层

最后,我们添加一个softmax层,就像前面的单层softmax regression一样。

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

训练和评估模型

使用与之前简单的单层SoftMax神经网络模型几乎相同的一套代码,不同之处在于:

代码:

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))
# 优化器
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 预测值
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
# 计算准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 运行
sess.run(tf.global_variables_initializer())
# 迭代
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print("step %d, training accuracy %g"%(i, train_accuracy))
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

这个模型的准确率达到了99.2%。

参考

  1. TensorFlow 官网
  2. TensorFlow 中文社区
上一篇 下一篇

猜你喜欢

热点阅读