深度学习

2020 深度学习 ResNet

2020-10-01  本文已影响0人  zidea

ResNet

2014 年底接下出现 resNet 当时特别震惊,改变了大家对深度网络做的层数的限制,

<img src="images/../../images/kaiming.png">
在ResNet 做到了误差率 2.3 比人类的 5.1 还要低。从而 ImageNet 也退出历史舞台

<img src="../images/imagenet.jpg">

梯度消失

<img src="../images/resnet_001.png">
不是由过拟合而发生,是因为网络不畅通,因为网络太深造成前向信息传递过程衰减

梯度可以认为是模型信息量,梯度大小信息量,还差多少拟合数据,当卷积神经网 label 用于靠近输出层拟合,所以在接近输入的层梯度为 0 ,变宽不如变深效果,变宽平方增加,变深是线性增加,也就是简单函数来拟合(变深)

functin

resNet 是串联,输入可以跳过一些层快速来输出,梯度可以直接跳到前面,可以认为两个模型加载一起作为输出,也就是一个简单模型和一个复杂模型合起来做一件事,

加入 batchnormal

Residual 块(残差块)

<img src="../images/resnet_01.jpeg" width="60%">

F(X) = H(X) - X

介绍网络结构

<img src="../images/resnet_02.jpeg">

我们看 152 层

残差网络性能结构

<img src="../imagee/../images/resnet_006.png">
残差网络可以看成集成模型,输入直接通过这个分支。这个网络可以,信息冗余所以很好结果,集成网络,随便去掉神经网不会影响卷积神经网的工作,而在 VGG

而前几层学习一些特征,而后几层学习另一些特征,所以残差网络是可以自由组合,

DenseNet

<img src="../images/densenet.jpeg">

加法变为合并操作,concate 深度增长很快,在 googleNet 加入 1 x 1 更改,这个在 Densenet 叫过渡块,

上一篇 下一篇

猜你喜欢

热点阅读