数据分析R语言学习

Rdata001 数据处理包tidyverse

2020-09-15  本文已影响0人  caoqiansheng

1.数据处理

image.png
1.1 数据导入

将数据导入R。这实际上就是读取保存在文件、数据库或Web API 中的数
据,再加载到R 的数据框中。

1.2 数据整理

导入数据后,就应该对数据进行整理。数据整理就是将数据保存为一致的形式,以满足其所在数据集在语义上的要求。简而言之,如果数据是整洁的,那么每列都是一个变量,每行都是一个观测。整洁的数据非常重要,因为一致的数据结构可以让你将工作重点放在与数据有关的问题上,而不用再费尽心思地将数据转换为各种形式以适应不同的函数。一旦拥有了整洁的数据,通常下一步就是对数据进行转换。数据转换包括选取出感兴趣的观测(如居住在某个城市里的所有人,或者去年的所有数据)、使用现有变量创建新变量(如根据距离和时间计算出速度),以及计算一些摘要统计量(如计数或均值)。数据整理和数据转换统称为数据处理。

1.3 可视化与建模

一旦使用需要的变量完成了数据整理,那么生成知识的方式主要有两种:可视化与建模。这两种方式各有利弊,相辅相成。因此,所有实际的数据分析过程都要在这两种方式间多次重复。

1.4 沟通

数据科学的最后一个步骤就是沟通。对于任何数据分析项目来说,沟通绝对是一个极其重要的环节。如果不能与他人交流分析结果,那么不管模型和可视化让你对数据理解得多么透彻,这都是没有任何实际意义的。

1.5 编程

围绕在这些技能之外的是编程。编程是贯穿数据科学项目各个环节的一项技能。数据科学家不一定是编程专家,但掌握更多的编程技能总是有好处的,因为这样你就能够对日常任务进行自动处理,并且非常轻松地解决新的问题。

2.tidyverse简介

https://www.tidyverse.org/
http://tidyverse.tidyverse.org
https://github.com/tidyverse/tidyverse
Report bugs at https://github.com/tidyverse/tidyverse/issues

image.png

tidyverse是为数据科学而设计的R软件包的自以为是的集合。 所有软件包都共享基本的设计理念,语法和数据结构。
使用以下命令安装完整的tidyverse:

2.1 安装
# Install from CRAN
install.packages("tidyverse")

# Or the development version from GitHub
# install.packages("devtools")
devtools::install_github("tidyverse/tidyverse")
2.2 加载
library(tidyverse)
#> ── Attaching packages ────────────────────────────────────────────────── tidyverse 1.2.1.9000 ──
#> ✓ ggplot2 3.2.1          ✓ purrr   0.3.3     
#> ✓ tibble  2.1.3          ✓ dplyr   0.8.3     
#> ✓ tidyr   1.0.0.9000     ✓ stringr 1.4.0     
#> ✓ readr   1.3.1          ✓ forcats 0.4.0
#> ── Conflicts ────────────────────────────────────────────────────────── tidyverse_conflicts() ──
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag()    masks stats::lag() 
image.png

3 tidyverse包分类

image.png
3.1 数据导入
3.2 数据整理
3.3 数据转换
3.4 数据可视化
3.5 编程

Reference

https://zhuanlan.zhihu.com/p/28344817

上一篇 下一篇

猜你喜欢

热点阅读