服务器后端开发Java数据库

explain的属性详解与提速百倍的优化示例

2019-08-18  本文已影响17人  全菜工程师小辉

在MySQL中,可以通过EXPLAIN命令获取MySQL如何执行SELECT语句的信息,包括在SELECT语句执行过程中表如何连接和连接的顺序。

EXPLAIN命令虽然没有提供任何优化建议,但它能够提供重要的信息有助于调优决策。

EXPLAIN只能解释SELECT操作,其他操作要重写为SELECT后查看执行计划。

使用方法

在要查询的SQL语句前加上explain,然后执行就可以了。如:

EXPLAIN SELECT
    goods_name,
    seckill_price
FROM
    seckill_goods,
    goods
WHERE
    seckill_goods.id = goods.id

explain属性的含义

执行上面SQL语句之后。

explain

各属性含义:(笔者常关注的参数:type、key、rows)

id

查询的序列号。

id是一组数字,表示查询中执行select子句或操作表的顺序;如果id相同,则执行顺序从上至下,如果是子查询,id的序号会递增,id越大则优先级越高,越先会被执行。

id列为null则表示这一行是一个结果集,不需要使用它来进行查询。

select_type

显示每个select子句的查询类型。

table

输出的行所引用的表。

partitions

版本5.7以前,该项是explain partitions显示的选项,5.7以后成为了默认选项。该列显示的是分区表命中的分区情况。非分区表该字段为空(null)。

type

对表访问方式,表示MySQL在表中找到所需行的方式,又称“访问类型”。

性能依次由好到差:system,const,eq_ref,ref,fulltext,ref_or_null,unique_subquery,index_subquery,range,index_merge,index,all。

除了all之外,其他的type都可以使用到索引。除了index_merge之外,其他的type只可以用到一个索引。

possible_keys

显示可能应用在这张表中的索引,一个或多个。查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询实际使用。

该列完全独立于EXPLAIN输出所示的表的次序。这意味着在possible_keys中的某些键实际上不能按生成的表次序使用。

如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查WHERE子句是否引用某些列或适合索引的列来提高查询性能

key

显示MySQL实际决定使用的键(索引),必然包含在possible_keys中,如果没有索引被选择,是NULL。

type为index_merge时,这里可能出现两个以上的索引,其他的type这里只会出现一个。

key_len

使用到索引字段的长度。

如果是单列索引,那就返回整个索引长度;如果是多列索引,那么查询不一定都能使用到所有的列,返回具体使用索引的长度(没有使用到的列,这里不会计算进去)。对比这个数值和多列索引的总长度,就可以推测是否使用到所有的列。

mysql的ICP特性使用到的索引不会计入其中。

key_len只计算where条件用到的索引长度,而排序和分组就算用到了索引,也不会计算到key_len中。

key_len显示的值为索引字段的最大可能长度,并非实际使用长度,即key_len是根据表定义计算而得,不是通过表内检索出的。

ref

显示索引的那一列被使用了,如果可能的话,最好是一个常数。哪些列或常量被用于查找索引列上的值。

rows

MySQL根据表统计信息及索引选用情况,估算mysql查询过程中遍历的行数,不是准确值。

filtered

使用explain extended时会出现这个列,5.7之后的版本默认就有这个字段,不需要使用explain extended了。这个字段表示存储引擎返回的数据在server层过滤后,剩下多少满足查询的记录数量的比例,这个值是百分比,不是具体记录数。

Extra

执行情况的说明和描述,显示信息种类非常多,下面只列举常见的结果。

优化示例

优化示例章节,节选“美团技术团队”的“MySQL索引原理及慢查询优化”文章,点击查看(如果链接失效,请查看原文)

慢查询优化基本步骤:

  1. 先运行看看是否真的很慢,注意设置SQL_NO_CACHE
  2. where条件单表查,锁定最小返回记录表——把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高
  3. explain查看执行计划,是否从锁定记录较少的表开始查询。
  4. order by limit 形式的sql语句让排序的表优先查
  5. 了解业务方使用场景
  6. 加索引时参照建索引的几大原则
  7. 观察结果,不符合预期继续从0分析

不同的SQL语句书写方式对于效率往往有本质的差别,这要求我们对mysql的执行计划和索引原则有非常清楚的认识,请看下面的语句:

select
   distinct cert.emp_id 
from
   cm_log cl 
inner join
   (
      select
         emp.id as emp_id,
         emp_cert.id as cert_id 
      from
         employee emp 
      left join
         emp_certificate emp_cert 
            on emp.id = emp_cert.emp_id 
      where
         emp.is_deleted=0
   ) cert 
      on (
         cl.ref_table='Employee' 
         and cl.ref_oid= cert.emp_id
      ) 
      or (
         cl.ref_table='EmpCertificate' 
         and cl.ref_oid= cert.cert_id
      ) 
where
   cl.last_upd_date >='2013-11-07 15:03:00' 
   and cl.last_upd_date<='2013-11-08 16:00:00';

1.直接运行尝试

先运行一下,53条记录 1.87秒,又没有用聚合语句,比较慢

53 rows in set (1.87 sec)

2.执行explain查看执行计划

+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
| id | select_type | table      | type  | possible_keys                   | key                   | key_len | ref               | rows  | Extra                          |
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
|  1 | PRIMARY     | cl         | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date     | 8       | NULL              |   379 | Using where; Using temporary   |
|  1 | PRIMARY     | <derived2> | ALL   | NULL                            | NULL                  | NULL    | NULL              | 63727 | Using where; Using join buffer |
|  2 | DERIVED     | emp        | ALL   | NULL                            | NULL                  | NULL    | NULL              | 13317 | Using where                    |
|  2 | DERIVED     | emp_cert   | ref   | emp_certificate_empid           | emp_certificate_empid | 4       | meituanorg.emp.id |     1 | Using index                    |
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+

简述一下执行计划,首先mysql根据idx_last_upd_date索引扫描cm_log表获得379条记录;然后查表扫描了63727条记录,分为两部分,derived表示构造表,也就是不存在的表,可以简单理解成是一个语句形成的结果集,后面的数字表示语句的ID。derived2表示的是ID = 2的查询构造了虚拟表,并且返回了63727条记录。我们再来看看ID = 2的语句究竟做了写什么返回了这么大量的数据,首先全表扫描employee表13317条记录,然后根据索引emp_certificate_empid关联emp_certificate表,rows = 1表示,每个关联都只锁定了一条记录,效率比较高。获得后,再和cm_log的379条记录根据规则关联。从执行过程上可以看出返回了太多的数据,返回的数据绝大部分cm_log都用不到,因为cm_log只锁定了379条记录。

3.优化分析

如何优化呢?可以看到在运行完后还是要和cm_log做join,那么我们能不能之前和cm_log做join呢?仔细分析语句不难发现,其基本思想是如果cm_log的ref_table是EmpCertificate就关联emp_certificate表,如果ref_table是Employee就关联employee表,我们完全可以拆成两部分,并用union连接起来,注意这里用union,而不用union all是因为原语句有“distinct”来得到唯一的记录,而union恰好具备了这种功能。如果原语句中没有distinct不需要去重,就可以直接使用union all了,因为使用union需要去重的动作,会影响SQL性能。

优化过的语句如下:

select
   emp.id 
from
   cm_log cl 
inner join
   employee emp 
      on cl.ref_table = 'Employee' 
      and cl.ref_oid = emp.id  
where
   cl.last_upd_date >='2013-11-07 15:03:00' 
   and cl.last_upd_date<='2013-11-08 16:00:00' 
   and emp.is_deleted = 0  
union
select
   emp.id 
from
   cm_log cl 
inner join
   emp_certificate ec 
      on cl.ref_table = 'EmpCertificate' 
      and cl.ref_oid = ec.id  
inner join
   employee emp 
      on emp.id = ec.emp_id  
where
   cl.last_upd_date >='2013-11-07 15:03:00' 
   and cl.last_upd_date<='2013-11-08 16:00:00' 
   and emp.is_deleted = 0

4.确保优化后的结果与之前结果一致

本次优化不需要了解业务场景,只需要改造的语句和改造之前的语句保持结果一致

5.判断是否加索引

现有索引可以满足,不需要建索引

6.观察优化结果

用改造后的语句实验一下,只需要10ms,降低了近200倍!

+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
| id | select_type  | table      | type   | possible_keys                   | key               | key_len | ref                   | rows | Extra       |
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
|  1 | PRIMARY      | cl         | range  | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8       | NULL                  |  379 | Using where |
|  1 | PRIMARY      | emp        | eq_ref | PRIMARY                         | PRIMARY           | 4       | meituanorg.cl.ref_oid |    1 | Using where |
|  2 | UNION        | cl         | range  | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8       | NULL                  |  379 | Using where |
|  2 | UNION        | ec         | eq_ref | PRIMARY,emp_certificate_empid   | PRIMARY           | 4       | meituanorg.cl.ref_oid |    1 |             |
|  2 | UNION        | emp        | eq_ref | PRIMARY                         | PRIMARY           | 4       | meituanorg.ec.emp_id  |    1 | Using where |
| NULL | UNION RESULT | <union1,2> | ALL    | NULL                            | NULL              | NULL    | NULL                  | NULL |             |
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
53 rows in set (0.01 sec)
哎呀,如果我的名片丢了。微信搜索“全菜工程师小辉”,依然可以找到我
上一篇 下一篇

猜你喜欢

热点阅读