Java-多线程工作流

flowable 基于 ThreadPoolExecutor 进

2020-11-09  本文已影响0人  东方不喵

场景:在普通的开发的时候,任务是单线程处理的,这这时候性能可能有点慢。基于 juc 包下的ThreadPoolExecutor 进行开发,可以转换成为批处理的,使性能成倍提高

出现主要的问题:将任务切割成为子任务的时候,事务统一性被破坏。

环境
springboot:2.2.0.RELEASE
flowable:6.4.2

git地址:https://github.com/oldguys/flowable-modeler-demo/tree/feature_threadpoolexecutor_no_spring_proxy_transaction

分析步骤:

Step1. ThreadPoolExecutor 的基本用法,编写通用工具类
Step2. 基于面向接口开发,进行通用抽象
Step3. 分析spring事务,将基于注解的声明式事务,改为编程式事务
Step4. 使用 变量表示来决定是否使用统一事务

Step1: ThreadPoolExecutor 简单用法

基本处理代码


ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
                .setNameFormat("flow-pool-%d")
                .build();

int corePoolSize = 10;
int maximumPoolSize = 10;
long keepAliveTime = 3;

TimeUnit unit = TimeUnit.SECONDS;
BlockingQueue<Runnable> workQueue = new LinkedBlockingQueue<>();

ExecutorService executorService =  new ThreadPoolExecutor(
                corePoolSize,
                maximumPoolSize,
                keepAliveTime,
                unit,
                workQueue,
                namedThreadFactory) {
            @Override
            protected void beforeExecute(Thread t, Runnable r) {
                // 线程处理前置方法
            }

            @Override
            protected void afterExecute(Runnable r, Throwable t) {
               // 线程处理后置方法
            }
};

List<Future<?>> futures = new ArrayList<>();

for (int i = 0; i < group; i++) {

    int startIndex = i * groupSize;
    int endIndex = (i + 1) * groupSize;
    if (endIndex > toDoList.size()) {
         endIndex = toDoList.size();
     }
     List<?> items = toDoList.subList(startIndex, endIndex);
    futures.add(executorService.submit(new SingleTransactionPoolTask(execution, items, flag)));
}

try {
  for (Future<?> future : futures) {
       future.get();
  }
} catch (Exception e) {
    e.printStackTrace();
    // 业务操作
} finally {
    executorService.shutdown();
}

  1. 构造方法
名称 类型 含义
corePoolSize int 核心线程池大小
maximumPoolSize int 最大线程池大小
keepAliveTime long 线程最大空闲时间
unit TimeUnit 时间单位
workQueue BlockingQueue<Runnable> 线程等待队列
threadFactory ThreadFactory 线程创建工厂
  1. ThreadPoolExecutor 重写方法
方法名 作用
protected void beforeExecute(Thread t, Runnable r) { } 线程处理前置调用
protected void afterExecute(Runnable r, Throwable t) { } 线程处理后置调用
protected void terminated() { } 线程处理结束之后调用

在进行主线程拆分成多子线程并发处理的时候,经常会遇到部分主线程的数据无法在子线程获取到,此时就可以通过重写线程池 beforeExecute() 方法,将主线程数据同步到子线程中。如:工作流的Authentication.setAuthenticatedUserId(currentUserId);
基于ThreadLocal 的全局变量设置

  1. 线程池调用任务
    此处为线程池实际处理方法,

ExecutionService.submit(Runnable task);

    /**
     * Submits a Runnable task for execution and returns a Future
     * representing that task. The Future's {@code get} method will
     * return {@code null} upon <em>successful</em> completion.
     *
     * @param task the task to submit
     * @return a Future representing pending completion of the task
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     * @throws NullPointerException if the task is null
     */
    Future<?> submit(Runnable task);

SingleTransactionPoolTask 实现 runnable 接口

public class SingleTransactionPoolTask implements Runnable {

    private final ThreadExecution threadExecution;

    private final List<?> list;

    private final BatchTransactionFlag flag;

    public SingleTransactionPoolTask(ThreadExecution threadExecution, List<?> list, BatchTransactionFlag flag) {
        this.threadExecution = threadExecution;
        this.list = list;
        this.flag = flag;
    }

    @Override
    public void run() {
        try {
            threadExecution.threadExecute(list);
        } finally {
            flag.getCompleteThreads().incrementAndGet();
        }
    }
}
  1. 返回线程调用的 处理方法
    主要进行子线程中是否有异常,如果具有异常则应该进行的对应业务处理
try {
  for (Future<?> future : futures) {
       future.get();
  }
} catch (Exception e) {
    e.printStackTrace();
    // 业务操作
} finally {
    executorService.shutdown();
}

Step2: 基于面向接口开发,将业务操作进行多态

基本的类关系图

ThreadExecution 抽象子任务接口,具体不同业务编写指定的实现类,形成多态。通用工具类统一调用接口

public interface ThreadExecution {

    /**
     *  处理线程任务
     * @param list
     */
    void threadExecute(List<?> list);
}

SingleTransactionPoolTask 通用任务实现类,基于 依赖倒置原则 调用 ThreadExecution

public class SingleTransactionPoolTask implements Runnable {

    private final ThreadExecution threadExecution;

    private final List<?> list;

    private final BatchTransactionFlag flag;

    public SingleTransactionPoolTask(ThreadExecution threadExecution, List<?> list, BatchTransactionFlag flag) {
        this.threadExecution = threadExecution;
        this.list = list;
        this.flag = flag;
    }

    @Override
    public void run() {
        try {
            threadExecution.threadExecute(list);
        } finally {
            flag.getCompleteThreads().incrementAndGet();
        }
    }
}

实现 ThreadExecution 接口,进行业务多态
BatchStartProcessThreadExecutionImpl

@Slf4j
public class BatchStartProcessThreadExecutionImpl implements ThreadExecution {

    private RuntimeService runtimeService;

    private List<BatchStartProcessInstanceRsp.ProcessInstanceItem> records;

    public BatchStartProcessThreadExecutionImpl(List<BatchStartProcessInstanceRsp.ProcessInstanceItem> records) {
        this.records = records;
        this.runtimeService = SpringContextUtils.getBean(RuntimeService.class);
    }

    @Override
    public void threadExecute(List list) {
        // 省略业务代码
    }
}

BatchTaskCompleteTaskWithBatchTransactionThreadExecutionImpl

@Slf4j
public class BatchTaskCompleteTaskWithBatchTransactionThreadExecutionImpl implements ThreadExecution {

    private List<BatchCompleteTaskRsp.CompleteTaskItem> result;

    private FlowTaskService flowTaskService;

    public BatchTaskCompleteTaskWithBatchTransactionThreadExecutionImpl(List<BatchCompleteTaskRsp.CompleteTaskItem> result) {
        this.result = result;
        this.flowTaskService = SpringContextUtils.getBean(FlowTaskService.class);
    }

    @Override
    public void threadExecute(List list) {
        // 省略业务代码
    }
}

Step3. 分析spring事务,将基于注解的声明式事务,改为编程式事务

在进行spring开发的时候,基本都是基于spring的声明式事务(@Transactional)进行开发,可以做到非常高效。但是基于多线程开发的时候,通过debug,可以发现,主线程还没有进行异常处理环节,子线程事务已经提交,并且在数据库已经可以查询到。 这个并不满足于业务需求。(如图)

dubug看出还未到执行回退业务操作 子线程事务已经提交,数据库可以查询到结果

基于对Spring事务bean之间关系的了解,事务都是围绕着 TransactionManager,实现类为:org.springframework.jdbc.datasource.DataSourceTransactionManager,可以找到接口org.springframework.transaction.PlatformTransactionManager,并且该接口具有如下的方法

PlatformTransactionManager接口的方法

方法名 功能
TransactionStatus getTransaction(@Nullable TransactionDefinition definition) 获取当前的事务
void commit(TransactionStatus status) 提交事务
void rollback(TransactionStatus status) 回滚事务

所以获取事务的代码则为

// 获取事务
TransactionStatus transactionStatus = transactionManager.getTransaction(TransactionDefinition.withDefaults());

// 提交事务
transactionManager.commit(transactionStatus);

// 回滚事务
transactionManager.rollback(transactionStatus);

所以原本计划是:根据传入参数,把事务从子线程中获取,再回到主线程中提交。不过事与愿违的是,提交事务并没有想象中那么直接。会抛出异常

DefaultCommonThreadExecutionServiceBean

@Service
public class DefaultCommonThreadExecutionServiceBean implements CommonThreadExecutionService {

    @Resource
    private DataSourceTransactionManager transactionManager;

    @Override
//    @Transactional(rollbackFor = Exception.class)
    public int executeBatch(ThreadExecution threadExecution, List<?> sequence, List<TransactionStatus> transactionStatusList) {

        TransactionStatus transactionStatus = transactionManager.getTransaction(TransactionDefinition.withDefaults());
        transactionStatusList.add(transactionStatus);

        threadExecution.threadExecute(sequence);

        return 0;
    }
}

FlowThreadPoolExecutor 代码段

  DataSourceTransactionManager transactionManager = SpringContextUtils.getBean(DataSourceTransactionManager.class);
        try {
            for (Future future : futures) {
                future.get();
            }

            transactionStatusList.forEach(obj -> {
                transactionManager.commit(obj);
            });

        } catch (Exception e) {
            e.printStackTrace();

            transactionStatusList.forEach(obj -> {
                transactionManager.rollback(obj);
            });

        } finally {
            executorService.shutdown();
        }
系统抛出异常 navicat 出现事务数据库被锁,无法清除数据

根据spring事务源码分析可知,spring的事务也是基于ThreadLocal的,所以出现了跨越线程的时候,就会出现无法执行完成。并且由navicat无法操作数据库可以看出,数据库事务并未提交,出现了行锁。

org.springframework.transaction.support.TransactionSynchronizationManager#unbindResource

    /**
     * Unbind a resource for the given key from the current thread.
     * @param key the key to unbind (usually the resource factory)
     * @return the previously bound value (usually the active resource object)
     * @throws IllegalStateException if there is no value bound to the thread
     * @see ResourceTransactionManager#getResourceFactory()
     */
    public static Object unbindResource(Object key) throws IllegalStateException {
        Object actualKey = TransactionSynchronizationUtils.unwrapResourceIfNecessary(key);
        Object value = doUnbindResource(actualKey);
        if (value == null) {
            throw new IllegalStateException(
                    "No value for key [" + actualKey + "] bound to thread [" + Thread.currentThread().getName() + "]");
        }
        return value;
    }

org.springframework.transaction.support.TransactionSynchronizationManager

获取线程资源

虽然源码中可以获取看到事务提交代码是 数据库连接的提交,但是其中还是必须执行 清除当前线程绑定的事务,才能彻底释放数据库连接。

提交事务:org.springframework.jdbc.datasource.DataSourceTransactionManager#doCommit

    @Override
    protected void doCommit(DefaultTransactionStatus status) {
        DataSourceTransactionObject txObject = (DataSourceTransactionObject) status.getTransaction();
        Connection con = txObject.getConnectionHolder().getConnection();
        if (status.isDebug()) {
            logger.debug("Committing JDBC transaction on Connection [" + con + "]");
        }
        try {
            con.commit();
        }
        catch (SQLException ex) {
            throw new TransactionSystemException("Could not commit JDBC transaction", ex);
        }
    }

抛出异常:org.springframework.transaction.support.AbstractPlatformTransactionManager#cleanupAfterCompletion

    /**
     * Clean up after completion, clearing synchronization if necessary,
     * and invoking doCleanupAfterCompletion.
     * @param status object representing the transaction
     * @see #doCleanupAfterCompletion
     */
    private void cleanupAfterCompletion(DefaultTransactionStatus status) {
        status.setCompleted();
        if (status.isNewSynchronization()) {
            TransactionSynchronizationManager.clear();
        }
        if (status.isNewTransaction()) {
            doCleanupAfterCompletion(status.getTransaction());
        }
        if (status.getSuspendedResources() != null) {
            if (status.isDebug()) {
                logger.debug("Resuming suspended transaction after completion of inner transaction");
            }
            Object transaction = (status.hasTransaction() ? status.getTransaction() : null);
            resume(transaction, (SuspendedResourcesHolder) status.getSuspendedResources());
        }
    }

所以最终解决还是需要在子线程进行提交,此时,又可以使用线程池的重写 java.util.concurrent.ThreadPoolExecutor#afterExecute
并且通过变量来确定子线程是否已经执行完成,如果执行完成,才进行事务的提交

BatchTransactionFlag

@Getter
public class BatchTransactionFlag {

    private final AtomicInteger completeThreads = new AtomicInteger();

    private final AtomicInteger successThreads = new AtomicInteger();

    private final int groupSize;

    private boolean batchTransaction;

    private Map<Long, TransactionStatus> longTransactionStatusMap;

    private final List<?> toDoList;

    public BatchTransactionFlag(int groupSize, boolean batchTransaction, List<?> toDoList) {
        this.groupSize = groupSize;
        this.batchTransaction = batchTransaction;
        this.toDoList = toDoList;
        if (batchTransaction) {
            longTransactionStatusMap = new ConcurrentHashMap<>();
        }
    }
}

CommonThreadExecutionService实现

@Slf4j
@Service
public class DefaultCommonThreadExecutionServiceBean implements CommonThreadExecutionService {

    @Resource
    private DataSourceTransactionManager transactionManager;

    @Override
    public int executeBatch(ThreadExecution threadExecution, List sequence, Map<Long, TransactionStatus> longTransactionStatusMap, BatchTransactionFlag flag) {

        synchronized (flag) {
            TransactionStatus transactionStatus = transactionManager.getTransaction(TransactionDefinition.withDefaults());
            longTransactionStatusMap.put(Thread.currentThread().getId(), transactionStatus);
            try {
                threadExecution.threadExecute(sequence);
                flag.getSuccessThreads().incrementAndGet();
            } finally {
                flag.getCompleteThreads().incrementAndGet();
                log.info("完成任务:" + Thread.currentThread().getName());
            }
        }
        return 0;
    }
}

经过测试发现,需要调用数据库修改的步骤,还是需要同步块的,不使用会导致数据库死锁,导致处理超时

Step4. 使用 变量表示来决定是否使用统一事务

从上面可以看到由于面向接口进行处理,所以根据需要 统一事务不需要统一事务 又可以使用不同实现类来进行控制,并且在编写线程池的时候也配合做判断。

线程池执行的代码


        for (int i = 0; i < group; i++) {

            int startIndex = i * groupSize;
            int endIndex = (i + 1) * groupSize;
            if (endIndex > toDoList.size()) {
                endIndex = toDoList.size();
            }
            List<?> items = toDoList.subList(startIndex, endIndex);
            if (batchTransaction) {
                futures.add(executorService.submit(new BatchTransactionPoolTask(execution, items, flag.getLongTransactionStatusMap(), flag)));
            } else {
                futures.add(executorService.submit(new SingleTransactionPoolTask(execution, items, flag)));
            }
        }

线程池的构建

private static ThreadPoolExecutor createThreadPoolExecutorInstance(int corePoolSize,
                                                                       int maximumPoolSize,
                                                                       long keepAliveTime,
                                                                       TimeUnit unit,
                                                                       BlockingQueue<Runnable> workQueue,
                                                                       BatchTransactionFlag flag
    ) {

        ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
                .setNameFormat("flow-pool-%d")
                .build();

        String currentUserId = SecurityUtils.getCurrentUserId();
        DataSourceTransactionManager transactionManager = SpringContextUtils.getBean(DataSourceTransactionManager.class);


        return new ThreadPoolExecutor(
                corePoolSize,
                maximumPoolSize,
                keepAliveTime,
                unit,
                workQueue,
                namedThreadFactory) {
            @Override
            protected void beforeExecute(Thread t, Runnable r) {
                Authentication.setAuthenticatedUserId(currentUserId);
            }

            @Override
            protected void afterExecute(Runnable r, Throwable t) {

                if (flag.isBatchTransaction()) {

                    try {
                        while (flag.getCompleteThreads().get() != flag.getGroupSize()) {
                            log.info(Thread.currentThread().getName() + " 等待主线程:getGroupSize:" + flag.getGroupSize() + "\tgetCompleteThreads:" + flag.getCompleteThreads().get());
                            log.info("开启事务个数:" + flag.getLongTransactionStatusMap().size());
                            Thread.sleep(1000);
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    TransactionStatus status = flag.getLongTransactionStatusMap().get(Thread.currentThread().getId());
                    if (flag.getSuccessThreads().get() == flag.getCompleteThreads().get()) {
                        log.info(Thread.currentThread().getName() + ":全部执行成功,提交事务");
                        transactionManager.commit(status);
                    } else {
                        log.info(Thread.currentThread().getName() + ":具有线程执行失败,回滚事务");
                        transactionManager.rollback(status);
                    }
                }
            }
        };
    }

这样就可以做到 动态判断是否需要统一事务。
详细demo可以查看git代码
git地址:https://github.com/oldguys/flowable-modeler-demo/tree/feature_threadpoolexecutor_no_spring_proxy_transaction

上一篇 下一篇

猜你喜欢

热点阅读