求导法则

2018-12-10  本文已影响0人  一碗好吃的乌冬面
1.常数和基本初等函数的导数公式

1.(C)' = 0
2.(x^n)' =\mu x^{n-1}
3.(\sin x)' =\cos x
4.(\cos x )' = - \sin x
5.(\tan x)' =\sec^2 x
6.(\cot x)' = - \csc^2 x
7.(\sec x)' = \sec x \tan x
8.(\csc x)' = - \csc x \cot x
9.(a^x)' = a^x \ln a
10.(e^x)' = e^x
11.(\log_ax)' = \frac{1}{x\ln a}
12.(\ln x)' = \frac{1}{x}
13.(\arcsin x)' = \frac{1}{\sqrt {1-x^2}}
14.(\arccos {x})' = -\frac{1}{\sqrt {1-x^2}}
15.(\arctan x)' = \frac{1}{1+x^2}
16.(\mathrm{arccot}\,x)' = -\frac{1}{1+x^2}


2.函数的和,差,积,商,的求导法则

u = u(x), v = v(x)都可导,则

(1) (u \pm v)' = u' \pm v'      (2)(Cu)' = Cu' (C是常数)
(3)(uv)' = u'v + uv'       (4)\left (\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} (v\neq0)


3.复合函数的求导法

y = f(u),而u = g(x)f(u)g(x)都可导,则复合函数y = f[g(x)]的导数为

\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}y'(x) = f'(u) \cdot g'(x)
                这个外函数的导数(f'(u))去乘以内函数的导数(g'(x))

(x^n)'=n*x^{n-1}

上一篇 下一篇

猜你喜欢

热点阅读