数据-R语言-图表-决策-Linux-Python

【R】《R for Data Science》学习笔记-读书总结

2018-10-26  本文已影响68人  沈梦圆1993

今天大致看完了hadley大神的《R for Data Science》http://r4ds.had.co.nz/,前面三部分认真看了,后面模型和交流部分简单翻阅了下,就跟看《R语言实战一样》那么飞速。作为一个总结狂,不写点学习总结感觉少了点什么,下面我简单写几点总结,作为这本书学习暂时结束的一个结束:

1:写了四篇学习笔记

在学习刚开始写了几篇笔记(做的很粗糙,都是摘录性的),从时间上看,大概看了三个星期左右。后面就没有继续写了,不太习惯做读书笔记,个人喜欢写那种带着问题的探索性笔记。

在先导篇是铺垫性的内容,为后面的数据探索篇、Wrangle(不懂中文啥意思)、程序篇、模型篇、交流篇做一个整体性的介绍。

2:体会最深的知识

在看完《R语言实战》后,这是我看的第二本关于R语言书籍,其他都是粗粗扫过,不算数(像R cook、ggplot2)。在这本书里,hadley大神写了很多用R做数据分析的技巧。下面我写下我体会最深的知识点:

Homogeneous Heterogeneous
1d Atomic vector List
2d Matrix Data frame
nd Array
# √ ggplot2 2.2.1     √ purrr   0.2.4
# √ tibble  1.3.4     √ dplyr   0.7.4
# √ tidyr   0.7.2     √ stringr 1.2.0
# √ readr   1.1.1     √ forcats 0.2.0

3:写在最后

看完这本书后,在以后用R进行数据分析绘图会更加高效了,对数据整形、数据可视化在数据挖掘中的重要性有了深刻的认识,当然模型也很重要(我不是没认真看嘛)。对R的编程语法更加熟悉了,毕竟中间刷了7道编程题(代码惨不忍睹)。总之,对于R语言又有更新的认识,更上一层楼的感觉(R的学习曲线还是比较陡峭的,一些高手的技巧在一定阶段是看不懂的,需要跟着时间慢慢沉淀。不要灰心,俺觉得R还是挺好学的一门语言,比Perl好学)。

刷题 image 我的微信公众号

如果实在有需要请给我发邮件:mengyuanshen@126.com
也可以关注我的公众号:沈梦圆(PandaBiotrainee)

上一篇 下一篇

猜你喜欢

热点阅读