三 (3.1 core 模块) 矩阵掩膜与图像线性操作
2018-10-25 本文已影响0人
交大小丑
一、掩膜操作
1.1掩膜操作函数:
1.1.1filter2D 函数的定义如下:
void filter2D( InputArray src, OutputArray dst, int ddepth,
InputArray kernel, Point anchor=Point(-1,-1),
double delta=0, int borderType=BORDER_DEFAULT );
1.1.2像素范围处理saturate_cast<typename _Tp>()
- saturate_cast<uchar>(-100),返回0
- saturate_cast<uchar>(288),返回255
- saturate_cast<uchar>(100),返回100
这个函数的功能是确保RGB值范围在0~255之间。
1.2 实例:理解filter2D函数的作用
#include <iostream>
#include <opencv2/opencv.hpp>
#include <math.h>
using namespace cv;
int main(int argc, const char * argv[]) {
Mat src, dst;
//加载图像
src = imread("/Users/Longxia/Downloads/552566-XXL.jpg");
if (!src.data) {
printf("could not load image\n");
return -1;
}
//显示
namedWindow("input Image", CV_WINDOW_AUTOSIZE);
imshow("input Image", src);
/*
//掩膜操作
int cols = (src.cols-1) * src.channels();
int offsetx = src.channels();
int rows = src.rows;
dst = Mat::zeros(src.size(), src.type());
for (int row = 1; row < rows-1; row++) {
const uchar *previous = src.ptr<uchar>(row-1);
const uchar *current = src.ptr<uchar>(row);
const uchar *next = src.ptr<uchar>(row+1);
uchar *output = dst.ptr<uchar>(row);
for (int col = offsetx; col < cols; col++) {
output[col] = saturate_cast<uchar>(5*current[col] - (current[col-offsetx] + current[col+offsetx] + previous[col] + next[col]));
}
}
*/
// openCV API 掩膜操作
//定义一个掩膜
double t = getTickCount(); //获得当前时间
Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1 ,0);
//src.depth() 表示与原图深度一样,-1也表示一样
filter2D(src, dst, src.depth(), kernel);
double time = (getTickCount() - t) / getTickFrequency();
printf("time consume %.5f", time);
//显示
namedWindow("contrast Image", CV_WINDOW_AUTOSIZE);
imshow("contrast Image", dst);
waitKey(0);
return 0;
}
二、图像线性操作
实现自己的线性滤波器 — OpenCV 2.3.2 documentation http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/imgtrans/filter_2d/filter_2d.html#filter-2d
实例
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace cv;
int main(int argc, char** argv) {
Mat src, dst;
int ksize = 0;
src = imread("D:/vcprojects/images/test1.png");
if (!src.data) {
printf("could not load image...\n");
return -1;
}
char INPUT_WIN[] = "input image";
char OUTPUT_WIN[] = "Custom Blur Filter Result";
namedWindow(INPUT_WIN, CV_WINDOW_AUTOSIZE);
namedWindow(OUTPUT_WIN, CV_WINDOW_AUTOSIZE);
imshow(INPUT_WIN, src);
// Sobel X 方向
// Mat kernel_x = (Mat_<int>(3, 3) << -1, 0, 1, -2,0,2,-1,0,1);
// filter2D(src, dst, -1, kernel_x, Point(-1, -1), 0.0);
// Sobel Y 方向
// Mat yimg;
// Mat kernel_y = (Mat_<int>(3, 3) << -1, -2, -1, 0,0,0, 1,2,1);
// filter2D(src, yimg, -1, kernel_y, Point(-1, -1), 0.0);
// 拉普拉斯算子
//Mat kernel_y = (Mat_<int>(3, 3) << 0, -1, 0, -1, 4, -1, 0, -1, 0);
//filter2D(src, dst, -1, kernel_y, Point(-1, -1), 0.0);
int c = 0;
int index = 0;
while (true) {
c = waitKey(500);
if ((char)c == 27) {// ESC
break;
}
ksize = 5 + (index % 8) * 2;
Mat kernel = Mat::ones(Size(ksize, ksize), CV_32F) / (float)(ksize * ksize);
filter2D(src, dst, -1, kernel, Point(-1, -1));
index++;
imshow(OUTPUT_WIN, dst);
}
// imshow("Sobel Y", yimg);
return 0;
}
OpenCV学习之路(四)——矩阵的掩膜操作 - 简书 https://www.jianshu.com/p/c6d1c01c900b