Kubernetes HPA 浅入深出

2022-11-01  本文已影响0人  guoweikuang

HPA 是 Kubernetes 提供了一个弹性伸缩的重要功能,简单来说就是支持在应用资源消耗量很大的情况下,根据用户配置的阈值来自动进行扩容,减少人工的介入;在应用资源消耗量很小的情况下,进行缩容,进而减少资源的消耗量,达到节约成本的目的。本文会先从几个方面来讲解 HPA 的功能、使用、扩展及使用,分别为 HPA背景、HPA原理、HPA组件、HPA功能及算法细节、Demo示例、HPA 高级使用、自定义指标、定时扩容、HPA相关项目、HPA源码分析。由于一篇文章写完以上所有章节,会比较多内容,因此这里会分章节说明

一、HPA 背景

HPA 全称是 Horizontal Pod Autoscaler(水平扩缩),是通过 kubernetes HPA Controller(控制器)来实现对 workload(可理解为业务应用)进行自动的扩容和缩容。下面从两个方面来分析一下背景

因此,为了解决业务资源利用率低、评估不准确等问题,需要通过动态调整方式来提高资源的利用率
目前 kubernetes 提供了三种维度的弹性扩缩方案

这里我们只针对于 HPA 进行讲解,另外两种组件不展开

二、HPA 原理

HPA 是如何工作的

下面图片描述了HPA的工作流程,HPA 是通过一个控制循环(HPA Controller)来定时对应用进行动态扩缩容的,通过启动k8s时配置 --horizontal-pod-autoscaler-sync-period 参数指定周期(默认值为 15 秒)。


LFTzid.png

每个周期内,HPA Controller 通过用户定义的 hpa 规则(下面会讲到),比如通过资源度量指标 API(可能是 metrics-server 或者 custom-resource-server 服务提供)来获取相应的CPU、Memory指标数据。
这里需要了解一下 k8s 的 APIServer 扩展API的两种方式:
1、通过 API Aggregation聚合层将外部服务注册到APIServer的特定接口(metrics-server、custom-resource-server)
2、通过 CRD 方式提供服务(这里不涉及)

HPA 提供了三种指标接口,用于不同指标信息的提供:

下图就是 HPA 调用以上注册的接口进行指标获取的流程图


qass9e.png

有个更具体的 网易轻舟提供的架构图


v2-ee3485022a1e118e766e25df7a1bc775_r.jpeg
HPA 执行步骤:
1、HPA Controller 每隔 15s 进行一次流程,先获取用户定义的 HPA规则,然后通过 aggregator 层,请求 metrics-server 获取 CPU 利用率

2、metrics-server 定时从 kubelet 的接口获取到相应的应用指标情况
3、kubelet 是通过内置的 cadvisor(指标收集组件),本质上是通过读取获取 /sys/cgroup/ 下应用的资源情况
4、根据 metrics-server 获取的 CPU 利用率,根据计算公式(下面会说到),得出新的副本数
5、如果用户当前的副本数与计算出来的不一致,则执行扩容或缩容的流程,最终也是把 deployment 资源的 replica (副本值)修改成计算的值
6、Deployment Controller 通过监控到副本值的变化,最终进行pod的扩缩动作

三、HPA组件

从 HPA 的架构图可以看出,如果需要完整使用 HPA 的全部指标类型,那么提供三个接口所需的服务

并不是一定是三个组件,像 prometheus-adapter, 已经实现了 metrics-server 组件的接口。因此安装了 prometheus-adapter 就不需要额外安装 metrics-server

metrics-server 的安装

安装步骤:

# 使用 yaml 方式在 k8s 集群安装
$ kubectl apply -f https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml
 
# 使用 helm chart 方式安装(前提是需要先安装 helm)
$ helm repo add metrics-server https://kubernetes-sigs.github.io/metrics-server/

metrics-server 安装完成后, kubectl top 命令就可用,平时需要查看某个pod 的CPU、内存情况,可直接通过该命令查看

验证安装是否成功

# 查看 metrcis-server 是否部署成功
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl get pods -n kube-system -l k8s-app=metrics-server
NAME                             READY   STATUS    RESTARTS      AGE
metrics-server-96bbfd9f5-mz75w   1/1     Running   3 (72m ago)   8d
 
# 查看 API 是否注册成功
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl get apiservice | grep metrics
v1beta1.metrics.k8s.io                 kube-system/metrics-server   True        8d
 
# 尝试获取节点指标信息
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes" | jq
{
  "kind": "NodeMetricsList",
  "apiVersion": "metrics.k8s.io/v1beta1",
  "metadata": {
    "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes"
  },
  "items": [
    {
      "metadata": {
        "name": "minikube",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/minikube",
        "creationTimestamp": "2022-04-10T02:46:10Z"
      },
      "timestamp": "2022-04-10T02:45:49Z",
      "window": "30s",
      "usage": {
        "cpu": "138063026n",
        "memory": "1332100Ki"
      }
    }
  ]
}
 
# 使用 kubectl top 查看应用的CPU及内存
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl top pod --all-namespaces
NAMESPACE     NAME                               CPU(cores)   MEMORY(bytes)
kube-system   coredns-65c54cc984-d9w46           0m           1Mi
kube-system   etcd-minikube                      0m           0Mi
kube-system   kube-apiserver-minikube            0m           0Mi
kube-system   kube-controller-manager-minikube   0m           0Mi
kube-system   kube-proxy-hbwsc                   0m           2Mi
kube-system   kube-scheduler-minikube            0m           2Mi
kube-system   metrics-server-96bbfd9f5-mz75w     0m           0Mi
kube-system   storage-provisioner                0m           3Mi

custom-metrics-server 的安装
因为 custom-metrics-server 有很多开源项目或者公司都提供了自己的实现,这里只介绍promethues-adapter 的使用

安装步骤

# helm 是 k8s 的包管理工具,类似于 mac 的 brew,入门可参考:[https://www.jianshu.com/p/4bd853a8068b(Helm](https://www.jianshu.com/p/4bd853a8068b(Helm) 从入门到实践)`

$ helm repo add prometheus-community https:``//prometheus-community``.github.io``/helm-charts`
$ helm repo update`
$ helm` `install` `--name my-release prometheus-community``/prometheus-adapter`

安装成功验证

╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1 | jq
{
  "kind": "APIResourceList",
  "apiVersion": "v1",
  "groupVersion": "custom.metrics.k8s.io/v1beta1",
  "resources": []
}

四、HPA功能及算法细节

这章节主要介绍 HPA 提供的功能(各种指标的扩缩)、版本的演化及相关算法细节

HPA 演进历程

目前 HPA 已经支持 autoscaling/v1、autoscaling/v2beta1 和 autoscaling/v2beta2、 autoscaling/v2 共四个版本

v1 版本示例

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: php-apache
  namespace: default
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: php-apache
  minReplicas: 1
  maxReplicas: 10
  targetCPUUtilizationPercentage: 50

v2beta2 版本:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: php-apache
  namespace: default
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: php-apache
  minReplicas: 1
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 50
  - type: Pods
    pods:
      metric:
        name: packets-per-second
      target:
        type: AverageValue
        averageValue: 1k
  - type: Object
    object:
      metric:
        name: requests-per-second
      describedObject:
        apiVersion: networking.k8s.io/v1beta1
        kind: Ingress
        name: main-route
      target:
        type: Value
        value: 10k
  - type: External
    external:
      metric:
        name: queue_messages_ready
        selector: "queue=worker_tasks"
      target:
        type: AverageValue
        averageValue: 30

注:最开始 metrics.k8s.io 接口是通过 Heapster 提供指标信息,后续才更新为 metrics-server

HPA 算法细节

Pod 水平自动扩缩控制器根据当前指标和期望指标来计算扩缩比例,后续会单独一章讲解伸缩算法的演进

期望副本数 = ceil[当前副本数 * (当前指标 / 期望指标)]

举个例子:

# 扩容计算
当前指标: 200m
期望指标: 100m
当前副本数: 1
期望副本数 = ceil(1 * (200 / 100)) = 2
 
# 缩容计算
当前指标: 50m
期望指标: 100m
当前副本数: 1
期望副本数 = ceil(1 * (50 / 100)) = 0.5 接近 1

注意点:扩缩容还有一个全局设置:horizontal-pod-autoscaler-tolerance,容忍值,默认为 0.1,如果计算出来的副本数在这个范围之内,则不进行扩缩容操作。举个例子,比如 HPA 设置 CPU 使用率超过 50% 就触发扩容,因为容忍值为 0.1, 因此只有当 CPU 使用率大于 50% + 50% * 0.1 = 55% 才会触发扩容动作。

虽然算法是很简单,但是 HPA 在计算时会做很多逻辑判断,来保证 HPA 功能的正常使用

1、通过全局参数控制扩缩容频率
旧版本提供了两个全局参数用于控制扩缩容的频率

2、计算时针对Pod 异常的优化
HPA 的计算指标都来自 pod,而因为 deployment 频繁地扩缩容,pod 的数量、状态以及负载情况一直在变化,会导致 HPA 在执行时,获取的指标存在一定的异常,。
比如,

1、在计算pod的平均metrics值的时候,统一把 ignore pods的metrics设置为最小值0,

2、如果HPA扩缩容的方向是扩容,把missing pods的metrics也设置为最小值0,

3、如果是缩容方向则把missing pods的metrics也设置为最大值(如果是Resouce类型,最大值是Pod的request值,否则最大值就是target value)

这种计算策略比较保守,能够最小程度减少HPA 功能对业务容器的频繁变动

总结:

注:这里列出一下 HPA 所有全局的配置参数

kube-controller-manager中包含了多个跟Pod 水平自动伸缩相关的启动参数:

参数名 参数描述
horizontal-pod-autoscaler-sync-period controller控制循环的检查周期(默认值为15秒)
horizontal-pod-autoscaler-upscale-delay 上次扩容之后,再次扩容需要等待的时间,默认
horizontal-pod-autoscaler-downscale-stabilization 上次缩容执行结束后,再次执行缩容的间隔,默认5分钟
horizontal-pod-autoscaler-downscale-delay 上次扩容之后,再次扩容需要等待的时间,
horizontal-pod-autoscaler-tolerance 缩放比例的容忍值,默认为0.1,即在0.9~1.1不会触发扩缩容
horizontal-pod-autoscaler-use-rest-clients 使用rest client获取metric数据,支持custom metric时需要使用
horizontal-pod-autoscaler-cpu-initialization-period pod 的初始化时间, 在此时间内的 pod,CPU 资源指标将不会被采纳
horizontal-pod-autoscaler-initial-readiness-delay pod 准备时间, 在此时间内的 pod 统统被认为未就绪

五、Demo示例

步骤1:首先需要新增一个 nginx 应用,部署为 deployment (注:该配置是有点小问题的, HPA是不能计算利用率信息)

apiVersion: apps/v1
kind: Deployment
metadata:
  name: hpa-demo
spec:
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx
        ports:
        - containerPort: 80

步骤2:使用 kubectl 命令部署 nginx deployment 和 hpa 对象

# 部署应用
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl apply -f hap-demo.yaml
deployment.apps/hpa-demo created
 
# 查看应用部署状态
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl get deploy
NAME                            READY   UP-TO-DATE   AVAILABLE   AGE
hpa-demo                        0/1     1            0           31s
my-release-prometheus-adapter   1/1     1            1           9d
 
# 创建 HPA 对象
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl autoscale deployment hpa-demo --cpu-percent=10 --min=1 --max=10
horizontalpodautoscaler.autoscaling/hpa-demo autoscaled
 
# 查看 HPA 状态
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl get hpa
NAME       REFERENCE             TARGETS         MINPODS   MAXPODS   REPLICAS   AGE
hpa-demo   Deployment/hpa-demo   <unknown>/10%   1         10        1          22s
 
# 查看 HPA 详细信息
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl describe hpa hpa-demo
Warning: autoscaling/v2beta2 HorizontalPodAutoscaler is deprecated in v1.23+, unavailable in v1.26+; use autoscaling/v2 HorizontalPodAutoscaler
Name:                                                  hpa-demo
Namespace:                                             default
Labels:                                                <none>
Annotations:                                           <none>
CreationTimestamp:                                     Tue, 19 Apr 2022 20:42:29 +0800
Reference:                                             Deployment/hpa-demo
Metrics:                                               ( current / target )
  resource cpu on pods  (as a percentage of request):  <unknown> / 10%
Min replicas:                                          1
Max replicas:                                          10
Deployment pods:                                       1 current / 0 desired
Conditions:
  Type           Status  Reason                   Message
  ----           ------  ------                   -------
  AbleToScale    True    SucceededGetScale        the HPA controller was able to get the target's current scale
  ScalingActive  False   FailedGetResourceMetric  the HPA was unable to compute the replica count: failed to get cpu utilization: missing request for cpu
Events:
  Type     Reason                        Age               From                       Message
  ----     ------                        ----              ----                       -------
  Warning  FailedGetResourceMetric       5s (x2 over 20s)  horizontal-pod-autoscaler  failed to get cpu utilization: missing request for cpu
  Warning  FailedComputeMetricsReplicas  5s (x2 over 20s)  horizontal-pod-autoscaler  invalid metrics (1 invalid out of 1), first error is: failed to get cpu utilization: missing request for cpu

由上面步骤可以知道,创建 HPA 成功后 ,由于没有设置 request, 导致 HPA Events 出现错误 failed to get cpu utilization: missing request for cpu ,因为 HPA默认是通过实际的利用率/request作为利用率的数值,因此可以检查Pod的Resource字段中是否包含Request字段。

步骤3:将上面的应用的 yaml 修改为如下:


apiVersion: apps/v1
kind: Deployment
metadata:
  name: hpa-demo
spec:
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx
        ports:
        - containerPort: 80
        resources:  # 新增内容
          requests:
            memory: 50Mi
            cpu: 50m

步骤4:然后通过 kubectl 更新 nginx deployment 的配置

# 更新 nginx 应用
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl apply -f hpa.yaml
deployment.apps/hpa-demo configured
 
# 删除 HPA 对象
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl delete hpa hpa-demo
horizontalpodautoscaler.autoscaling "hpa-demo" deleted
 
# 重新创建 HPA 对象
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl autoscale deployment hpa-demo --cpu-percent=10 --min=1 --max=10
horizontalpodautoscaler.autoscaling/hpa-demo autoscaled

步骤5:对 nginx 应用进行压测

# 获取 nginx 应用 pod 的 IP
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl get pod -o wide
 
 
# 新增压测环境 test-hpa, 在容器内部对 nginx 应用进行压测
╭─guoweikuang@guoweikngdeMBP2 ~
╰─$ kubectl run -it --image busybox test-hpa --restart=Never --rm /bin/sh
If you don't see a command prompt, try pressing enter.
/ # while true; do wget -q -O- http://<pod_ip>; done

步骤6:查看 hpa 扩缩情况

# 查看 pod 的 CPU、内存指标变化
╭─guoweikuang@guoweikngdeMBP2 ~/hpa
╰─$ kubectl top pod
NAME                        CPU(cores)   MEMORY(bytes)
hpa-demo-6b4467b546-75dv8   138m         4Mi
test-hpa                    471m         0Mi
 
 
# 查看 HPA 扩容具体情况,可以通过 Event 看出,当前CPU使用率 264% 远大于设置的10%,因此进行扩容操作
╭─guoweikuang@guoweikngdeMBP2 ~/hpa
╰─$ kubectl describe hpa hpa-demo
Name:                                                  hpa-demo
Namespace:                                             default
Labels:                                                <none>
Annotations:                                           <none>
CreationTimestamp:                                     Wed, 20 Apr 2022 00:20:00 +0800
Reference:                                             Deployment/hpa-demo
Metrics:                                               ( current / target )
  resource cpu on pods  (as a percentage of request):  264% (132m) / 10%
Min replicas:                                          1
Max replicas:                                          10
Deployment pods:                                       1 current / 4 desired
Conditions:
  Type            Status  Reason            Message
  ----            ------  ------            -------
  AbleToScale     True    SucceededRescale  the HPA controller was able to update the target scale to 4
  ScalingActive   True    ValidMetricFound  the HPA was able to successfully calculate a replica count from cpu resource utilization (percentage of request)
  ScalingLimited  True    ScaleUpLimit      the desired replica count is increasing faster than the maximum scale rate
Events:
  Type     Reason                        Age    From                       Message
  ----     ------                        ----   ----                       -------
  Warning  FailedGetResourceMetric       2m32s  horizontal-pod-autoscaler  failed to get cpu utilization: did not receive metrics for any ready pods
  Warning  FailedComputeMetricsReplicas  2m32s  horizontal-pod-autoscaler  invalid metrics (1 invalid out of 1), first error is: failed to get cpu utilization: did not receive metrics for any ready pods
  Normal   SuccessfulRescale             32s    horizontal-pod-autoscaler  New size: 4; reason: cpu resource utilization (percentage of request) above target
 
 
# 扩容因为没有冷却窗口的限制,因此一直扩容达到了 10个
╭─guoweikuang@guoweikngdeMBP2 ~/hpa
╰─$ kubectl describe hpa hpa-demo
Name:                                                  hpa-demo
Namespace:                                             default
Labels:                                                <none>
Annotations:                                           <none>
CreationTimestamp:                                     Wed, 20 Apr 2022 00:20:00 +0800
Reference:                                             Deployment/hpa-demo
Metrics:                                               ( current / target )
  resource cpu on pods  (as a percentage of request):  0% (0) / 10%
Min replicas:                                          1
Max replicas:                                          10
Deployment pods:                                       10 current / 10 desired
Conditions:
  Type            Status  Reason               Message
  ----            ------  ------               -------
  AbleToScale     True    ScaleDownStabilized  recent recommendations were higher than current one, applying the highest recent recommendation
  ScalingActive   True    ValidMetricFound     the HPA was able to successfully calculate a replica count from cpu resource utilization (percentage of request)
  ScalingLimited  True    TooManyReplicas      the desired replica count is more than the maximum replica count
Events:
  Type     Reason                        Age   From                       Message
  ----     ------                        ----  ----                       -------
  Warning  FailedGetResourceMetric       5m8s  horizontal-pod-autoscaler  failed to get cpu utilization: did not receive metrics for any ready pods
  Warning  FailedComputeMetricsReplicas  5m8s  horizontal-pod-autoscaler  invalid metrics (1 invalid out of 1), first error is: failed to get cpu utilization: did not receive metrics for any ready pods
  Normal   SuccessfulRescale             3m8s  horizontal-pod-autoscaler  New size: 4; reason: cpu resource utilization (percentage of request) above target
  Normal   SuccessfulRescale             2m8s  horizontal-pod-autoscaler  New size: 8; reason: cpu resource utilization (percentage of request) above target
  Normal   SuccessfulRescale             68s   horizontal-pod-autoscaler  New size: 10; reason:
 
# 查看 pod 的创建情况
  ╭─guoweikuang@guoweikngdeMBP2 ~/hpa
╰─$ kubectl get pod
NAME                        READY   STATUS              RESTARTS   AGE
hpa-demo-6b4467b546-22dwf   0/1     ContainerCreating   0          73s
hpa-demo-6b4467b546-4kfbc   0/1     ContainerCreating   0          73s
hpa-demo-6b4467b546-75dv8   1/1     Running             0          6m20s
hpa-demo-6b4467b546-c979v   1/1     Running             0          2m13s
hpa-demo-6b4467b546-cj8tv   0/1     ContainerCreating   0          13s
hpa-demo-6b4467b546-k2gkv   1/1     Running             0          2m13s
hpa-demo-6b4467b546-k8qb7   1/1     Running             0          2m13s
hpa-demo-6b4467b546-rqjm2   0/1     ContainerCreating   0          13s
hpa-demo-6b4467b546-tscgj   0/1     ContainerCreating   0          73s
hpa-demo-6b4467b546-zvzdz   1/1     Running             0          73s
test-hpa                    1/1     Running             0          4m18s

步骤7:停止压测,查看HPA情况

# 没有压测后,cpu 使用率很快降下来,HPA 开始执行缩容操作
╭─guoweikuang@guoweikngdeMBP2 ~/hpa
╰─$ kubectl describe hpa
Name:                                                  hpa-demo
Namespace:                                             default
Labels:                                                <none>
Annotations:                                           <none>
CreationTimestamp:                                     Wed, 20 Apr 2022 00:20:00 +0800
Reference:                                             Deployment/hpa-demo
Metrics:                                               ( current / target )
  resource cpu on pods  (as a percentage of request):  0% (0) / 10%
Min replicas:                                          1
Max replicas:                                          10
Deployment pods:                                       10 current / 1 desired
Conditions:
  Type            Status  Reason            Message
  ----            ------  ------            -------
  AbleToScale     True    SucceededRescale  the HPA controller was able to update the target scale to 1
  ScalingActive   True    ValidMetricFound  the HPA was able to successfully calculate a replica count from cpu resource utilization (percentage of request)
  ScalingLimited  True    TooFewReplicas    the desired replica count is less than the minimum replica count
Events:
  Type     Reason                        Age   From                       Message
  ----     ------                        ----  ----                       -------
  Warning  FailedGetResourceMetric       13m   horizontal-pod-autoscaler  failed to get cpu utilization: did not receive metrics for any ready pods
  Warning  FailedComputeMetricsReplicas  13m   horizontal-pod-autoscaler  invalid metrics (1 invalid out of 1), first error is: failed to get cpu utilization: did not receive metrics for any ready pods
  Normal   SuccessfulRescale             11m   horizontal-pod-autoscaler  New size: 4; reason: cpu resource utilization (percentage of request) above target
  Normal   SuccessfulRescale             10m   horizontal-pod-autoscaler  New size: 8; reason: cpu resource utilization (percentage of request) above target
  Normal   SuccessfulRescale             9m4s  horizontal-pod-autoscaler  New size: 10; reason:
  Warning  FailedGetResourceMetric       6m4s  horizontal-pod-autoscaler  failed to get cpu utilization: unable to get metrics for resource cpu: no metrics returned from resource metrics API
  Warning  FailedComputeMetricsReplicas  6m4s  horizontal-pod-autoscaler  invalid metrics (1 invalid out of 1), first error is: failed to get cpu utilization: unable to get metrics for resource cpu: no metrics returned from resource metrics API
  Normal   SuccessfulRescale             4s    horizontal-pod-autoscaler  New size: 1; reason: All metrics below target
 
 
# 检查缩容后的应用的副本数
╭─guoweikuang@guoweikngdeMBP2 ~/hpa
╰─$ kubectl get deployments.apps
NAME       READY   UP-TO-DATE   AVAILABLE   AGE
hpa-demo   1/1     1            1           16m
# 检查 hpa 的相关信息
╭─guoweikuang@guoweikngdeMBP2 ~/hpa
╰─$ kubectl get hpa
NAME       REFERENCE             TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
hpa-demo   Deployment/hpa-demo   0%/10%    1         10        1          15m
上一篇下一篇

猜你喜欢

热点阅读