秩1矩阵性质汇总

2021-05-09  本文已影响0人  YERA

秩1矩阵在高代中有着极其重要的作用,熟练掌握秩1矩阵的性质可以使得我们在推导一些公式或做题过程中事半功倍,下面我整理了一些常用的秩1矩阵的性质。

首先我们明确,秩1矩阵形如以下形式:
                  A = \alpha {\beta ^T} = \left[ {\begin{array}{*{20}{c}} {{a_1}}\\ {{a_2}}\\ \vdots \\ {{a_n}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{b_1}}&{{b_2}}& \cdots &{{b_n}} \end{array}} \right]

一、基本性质
1. {\beta ^T}\alpha = tr(A)
2. {A^2} = tr(A)A    {A^k} = {[tr(A)]^{k - 1}}A
3. A = {({a_{ij}})_{n \times n}}的秩r(A) = n - 1,则存在常数k,使得{({A^*})^2} = k{A^*} ,此时A^{*}是秩1矩阵
4. A = {({a_{ij}})_{2 \times 2}},则存在l \in N^{*},使得A^{l}=0,则A^{2}=0
二、特征值
1. tr(A) \ne 0A的特征值为0(n-1重), tr(A) = \sum\limits_{i = 1}^n {{a_i}{b_i}} (1重)
2. tr(A) = \sum\limits_{i = 1}^n {{a_i}{b_i}} = 0,则A的特征值为0(n重)

        \left| {\lambda E - \left[ {\begin{array}{*{20}{c}} {{a_1}}\\ {{a_2}}\\ \vdots \\ {{a_n}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{b_1}}&{{b_2}}& \cdots &{{b_n}} \end{array}} \right]} \right| = {\lambda ^{n - 1}}(\lambda - tr(A))\

3. A = {({a_{ij}})_{n \times n}}正定,\alpha是n维的非零实列向量,B = A\alpha {\alpha ^T}的特征值为0(n-1重),{\alpha ^T}A\alpha(1重)
三、对角化
A的最小多项式,x(x - tr(A)),当tr(A) \ne 0A可对角化;当tr(A) = 0A不可对角化
所以,存在可逆矩阵P,使得

                {P^{ - 1}}AP = \left[ {\begin{array}{*{20}{c}} {tr(A)}&{}&{}&{}\\ {}&0&{}&{}\\ {}&{}& \ddots &{}\\ {}&{}&{}&0 \end{array}} \right]

特别的,A = \alpha {\alpha ^T}(\alpha \ne 0)是实对称阵,则A一定可对角化
存在可逆矩阵P

                P = \left[ {\begin{array}{*{20}{c}} {{a_1}}&{ - {a_2}}&{ - {a_3}}& \cdots &{ - {a_n}}\\ {{a_2}}&{{a_1}}&{}&{}&{}\\ {{a_3}}&{}&{{a_1}}&{}&{}\\ \vdots &{}&{}& \ddots &{}\\ {{a_n}}&{}&{}&{}&{{a_1}} \end{array}} \right]\

使得

                  {P^{ - 1}}AP = \left[ {\begin{array}{*{20}{c}} {{\alpha ^T}\alpha }&{}&{}&{}\\ {}&0&{}&{}\\ {}&{}& \ddots &{}\\ {}&{}&{}&0 \end{array}} \right]\

PS: \alpha\beta的内积,(\alpha ,\beta ) = {\alpha ^T}\beta = {\beta ^T}\alpha \ne 0,也可以说明A可对角化
上一篇 下一篇

猜你喜欢

热点阅读