我爱编程

Python Recap

2018-05-27  本文已影响31人  district10

原来用过 python,学过几次 python,但是都没学会。。。(没有需求),现在工作上需要把 python 用起来。这里是一点笔记:

"str"
'str'
"a" + "b"   (c++ style concat)
"a" "b"     (c-style concat)
"str"[0]
len("str")

type(5)

and, or, not
1 < 2 < 3
5 // 3
5 /  3

if cond:
    ...
elif:
    ...
else:
    ...

for i in range(10):
    ...
for v in list:
    ...
for i, v in enumerate(list):
    ...

while cond:
    ...

# string interpolation
    "{} is a {}".format("This", "placeholder")
    "{0} can be {1}".format("strings", "formatted")
    "{name} wants to eat {food}".format(name="Bob", food="lasagna")

"etc" is None

# Convention is to use lower_case_with_underscores
some_var = 5

# ternary operator
    "yahoo!" if 3 > 2 else 2  # => "yahoo!"

li = [1, 2, 3]
li.append(4)
li.pop()

li[0]
li[start:stop:step]

del li[0]
li.remove(2)                        # remove first 2

2 in li
li.index(2)                         # find_first of 2  (raise error if not found)

# list concat
    li_a + li_b                     # create new list
    li_a.extend(li_b)               # append to li_a


# Tuples are like lists but are immutable.
tp = (1, 3, 5)
tup[0] = 3                          # Raises a TypeError

# You can unpack tuples (or lists) into variables
a, b, c = (1, 2, 3)  # a is now 1, b is now 2 and c is now 3
d, e, f = 4, 5, 6  # you can leave out the parentheses

# dict
filled_dict = {"one": 1, "two": 2, "three": 3}

filled_dict["one"]
filled_dict.get("one")              # => 1
filled_dict.get("four")             # => None
filled_dict.get("one", 4)           # => 1

filled_dict.setdefault("five", 5)   # set if key not here

# set
empty_set = set()
set(list_a)
filled_set = {1, 2, 2, 3, 4}        # => {1, 2, 3, 4}

# set ops
filled_set & other_set  # => {3, 4, 5}              # intersection
filled_set | other_set  # => {1, 2, 3, 4, 5, 6}     # union
filled_set - other_set  # => {1, 2, 3, 4, 5, 6}     # diff
{1, 2, 3, 4} ^ {2, 3, 5}  # => {1, 4, 5}            # symmetric diff
{1, 2} >= {1, 2, 3}  # => False                     # superset
{1, 2} >= {1, 2, 3}  # => False                     # subset

try:
    # Use "raise" to raise an error
    raise IndexError("This is an index error")
except IndexError as e:
    pass  # Pass is just a no-op. Usually you would do recovery here.
except (TypeError, NameError):
    pass  # Multiple exceptions can be handled together, if required.
else:  # Optional clause to the try/except block. Must follow all except blocks
    print "All good!"  # Runs only if the code in try raises no exceptions
finally:  # Execute under all circumstances
    print "We can clean up resources here"

# Instead of try/finally to cleanup resources you can use a with statement
with open("myfile.txt") as f:
    for line in f:
        print line

def add(x, y):
    return x + y

add(5, 6)
add(x=5, y=6)
add(y=6, x=5)

# *tuple                    args
# **dict                    kwargs
def all_the_args(*args, **kwargs):
    print args
    print kwargs

args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
all_the_args(*args)  # equivalent to all_the_args(1, 2, 3, 4)
all_the_args(**kwargs)  # equivalent to all_the_args(a=3, b=4)

def set_global_x(num):
    global x
    print x  # => 5
    x = num  # global var x is now set to 6
    print x  # => 6

# closure
def create_adder(x):
    def adder(y):
        return x + y

    return adder

(lambda x, y: x ** 2 + y ** 2)(2, 1)  # => 5

# There are built-in higher order functions
map(add_10, [1, 2, 3])  # => [11, 12, 13]
map(max, [1, 2, 3], [4, 2, 1])  # => [4, 2, 3]
filter

# list comprehension
[add_10(i) for i in [1, 2, 3]]  # => [11, 12, 13]
{x for x in 'abcddeef' if x in 'abc'}  # => {'a', 'b', 'c'}
{x: x ** 2 for x in range(5)}  # => {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

# We subclass from object to get a class.
class Human(object):
    # A class attribute. It is shared by all instances of this class
    species = "H. sapiens"

    # Basic initializer, this is called when this class is instantiated.
    # Note that the double leading and trailing underscores denote objects
    # or attributes that are used by python but that live in user-controlled
    # namespaces. You should not invent such names on your own.
    def __init__(self, name):
        # Assign the argument to the instance's name attribute
        self.name = name

        # Initialize property
        self.age = 0

    # An instance method. All methods take "self" as the first argument
    def say(self, msg):
        return "{0}: {1}".format(self.name, msg)

    # A class method is shared among all instances
    # They are called with the calling class as the first argument
    @classmethod
    def get_species(cls):
        return cls.species

    # A static method is called without a class or instance reference
    @staticmethod
    def grunt():
        return "*grunt*"

    # A property is just like a getter.
    # It turns the method age() into an read-only attribute
    # of the same name.
    @property
    def age(self):
        return self._age

    # This allows the property to be set
    @age.setter
    def age(self, age):
        self._age = age

    # This allows the property to be deleted
    @age.deleter
    def age(self):
        del self._age

# module
import math
print math.sqrt(16)  # => 4

from math import ceil, floor
import math as m

# generator
def double_numbers_generator(iterable):
    for i in iterable:
        yield i + i

# Decorators
# A decorator is a higher order function, which accepts and returns a function.
# Simple usage example – add_apples decorator will add 'Apple' element into
# fruits list returned by get_fruits target function.
def add_apples(func):
    def get_fruits():
        fruits = func()
        fruits.append('Apple')
        return fruits
    return get_fruits

@add_apples
def get_fruits():
    return ['Banana', 'Mango', 'Orange']

# Prints out the list of fruits with 'Apple' element in it:
# Banana, Mango, Orange, Apple
print ', '.join(get_fruits())

import sys
print sys.argv

# numpy
import numpy as np
np.range(end)
np.range(start, end, step)
np.linspace(left, right, num)

np.zeros                # init to zeros
np.ones                 # init to ones
np.empty                # init to empty
np.may_share_memory(a, b)

x[start:end:step, start:end:step]
y = x[:, 2:]
z = x[:, 2:].copy()

# mask
x[x > 5]

c = np.ones((3,3))
c.dot(c)                # matrix multiplication
c.T

x.sum(axis = 0)         # sum col dimension (first)
x.sum(axis = 1)         # sum row dimension (second)
x[0, :].sum()
x[0, :].max()
x[0, :].min()
x[0, :].argmax()
x[0, :].argmin()

np.median(x)
np.median(x, axis=-1)

np.sum
np.cumsum               # cumulative sum

np.array_equal(a, b)

refs: Learn python in Y Minutes

上一篇下一篇

猜你喜欢

热点阅读