2019最新Android算法相关面试大全,请查收
本专栏专注分享大型Bat面试知识,后续会持续更新,喜欢的话麻烦点击一个关注
本文讲解
- Hash值是如何生成
- 谈谈HashMap的原理
- 最小生成树算法
- 最短路径算法
- KMP算法
- 查找算法
- 排序算法
- 跳跃表
一.Hash
哈希表(Hash Table,也叫散列表),是根据关键码值 (Key-Value) 而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。哈希表的实现主要需要解决两个问题,哈希函数和冲突解决。
1.1哈希函数
哈希函数也叫散列函数,它对不同的输出值得到一个固定长度的消息摘要。理想的哈希函数对于不同的输入应该产生不同的结构,同时散列结果应当具有同一性(输出值尽量均匀)和雪崩效应(微小的输入值变化使得输出值发生巨大的变化)。
1.2冲突解决
-
开放地址法
:以发生冲突的哈希地址为输入,通过某种哈希冲突函数得到一个新的空闲的哈希地址的方法。有以下几种方式:-
线性探查法
:从发生冲突的地址开始,依次探查下一个地址,直到找到一个空闲单元。 -
平方探查法
:设冲突地址为d0,则探查序列为:d0+12,d0-12,d0+2^2...
-
-
拉链法
:把所有的同义词用单链表链接起来。在这种方法下,哈希表每个单元中存放的不再是元素本身,而是相应同义词单链表的头指针。HashMap
就是使用这种方法解决冲突的。
二.最小生成树算法
-
连通图
:在无向图G中,若从顶点i到顶点j有路径,则称顶点i和顶点j是连通的。若图G中任意两个顶点都连通,则称G为连通图。 -
生成树
:一个连通图的生成树是该连通图的一个极小连通子图,它含有全部顶点,但只有构成一个数的(n-1)
条边。 -
最小生成树
:对于一个带权连通无向图G中的不同生成树,各树的边上的 权值之和最小。构造最小生成树的准则有三条:- 必须只使用该图中的边来构造最小生成树。
- 必须使用且仅使用
(n-1)
条边来连接图中的n个顶点。 - 不能使用产生回路的边。
2.1Prim算法
假设G=(V,E)是一个具有n个顶点的带权连通无向图,T(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,则由G构造从起始顶点v出发的最小生成树T的步骤为:
-
初始化U={v},以v到其他顶点的所有边为候选边(U中所有点到其他顶点的边)。
-
重复以下步骤(n-1)次,使得其他(n-1)个顶点被加入到U中。
-
从候选边中挑选权值最小的边加入TE,设该边在
V-U
(这里是集合减)中的顶点是k,将k加入U中。 -
考察当前V-U中的所有顶点j,修改候选边,若边(k,j)的权值小于原来和顶点j关联的候选边,则用(k,j)取代后者作为候选边。
-
2.2Kruskal算法
假设G=(V,E)是一个具有n个顶点的带权连通无向图,T(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,则由G构造从起始顶点v出发的最小生成树T的步骤为:
-
置U的初始值等于V(即包含G中的全部顶点),TE的初始值为空
-
将图G中的边按权值从小到大的顺序依次选取,若选取的边未使生成树T形成回路,则加入TE,否则放弃,知道TE中包含(n-1)条边为止。
三. 最短路径算法
3.1Dijkstra —— 贪心算法
从一个顶点到其余顶点的最短路径
设G=(V,E)
是一个带权有向图,把图中顶点集合V分成两组,第1组为已求出最短路径的顶点(用S表示,初始时S只有一个源点,以后每求得一条最短路径v,...k
,就将k加到集合S中,直到全部顶点都加入S)。第2组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序把第2组的顶点加入S中。
步骤:
1\. 初始时,S只包含源点,即`S={v}`,顶点v到自己的距离为0。U包含除v外的其他顶点,v到U中顶点i的距离为边上的权。
2\. 从U中选取一个顶点u,顶点v到u的距离最小,然后把顶点u加入S中。
3\. 以顶点u为新考虑的中间点,修改v到U中各个点的距离。
4\. 重复以上步骤知道S包含所有顶点。
3.2Floyd —— 动态规划
Floyd 算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权(但不可存在负权回路)的最短路径问题。该算法的时间复杂度为,空间复杂度为
设 为从 到 的只以 集合中的节点为中间节点的最短路径的长度。
因此, 。伪代码描述如下:
// let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)
for each vertex v
dist[v][v] ← 0
for each edge (u,v)
dist[u][v] ← w(u,v) // the weight of the edge (u,v)
for k from 1 to |V|
for i from 1 to |V|
for j from 1 to |V|
if dist[i][j] > dist[i][k] + dist[k][j]
dist[i][j] ← dist[i][k] + dist[k][j]
end if
四.KMP算法
KMP算法解决的问题是字符匹配,这个算法把字符匹配的时间复杂度缩小到O(m+n),而空间复杂度也只有O(m),n是target的长度,m是pattern的长度。
-
部分匹配表(Next数组):表的作用是 让算法无需多次匹配S中的任何字符。能够实现线性时间搜索的关键是 在不错过任何潜在匹配的情况下,我们"预搜索"这个模式串本身并将其译成一个包含所有可能失配的位置对应可以绕过最多无效字符的列表。
-
Next数组(前缀和前缀的比较):t为模式串,j为下标
- Next[0] = -1
- Next[j] = MAX{ k | 0 < k < j | " t0 t1 ... tk " = "t ( j-k ) t ( j-k+1 ) ... t( j-1 )" }
|i| 0| 1| 2| 3| 4| 5 |6| |--| | t[i]| A| B| C| D| A| B| D| |next[i]| -1| 0 |0 |0 |0 |1 |2|
- NextVal数组:是一种优化后的Next数组,是为了解决类似aaaab这种模式串的匹配,减少重复的比较。 如果t[next[j]]=t[j]:nextval[j]=nextval[next[j]],否则nextval[j]=next[j]。
|i| 0| 1| 2| 3| 4| 5 |6| |--| | t | a| b| c| a| b| a |a| |next[j] | -1| 0 |0 |0 |1 |2 |1| |nextval[j] | -1| 0 |0 |-1 |0 |2 |1|
在上面的表格中,t[next[4]]=t[4]=b,所以nextval[4]=nextval[next[4]]=0
五.查找算法
5.1ASL
由于查找算法的主要运算是关键字的比较,所以通常把查找过程中对关键字的平均比较次数(平均查找长度)作为衡量一个查找算法效率的标准。ASL= ∑(n,i=1) Pi*Ci
,其中n
为元素个数,Pi
是查找第i
个元素的概率,一般为Pi=1/n
,Ci
是找到第i
个元素所需比较的次数。
5.2顺序查找
原理是让关键字与队列中的数从最后一个开始逐个比较,直到找出与给定关键字相同的数为止,它的缺点是效率低下。时间复杂度o(n)。
5.2折半查找
折半查找要求线性表是有序表。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为O(log n)。
-
可以借助二叉判定树求得折半查找的平均查找长度:
log2(n+1)-1
。 - 折半查找在失败时所需比较的关键字个数不超过判定树的深度,n个元素的判定树的深度和n个元素的完全二叉树的深度相同
log2(n)+1
。
public int binarySearchStandard(int[] num, int target){
int start = 0;
int end = num.length - 1;
while(start <= end){ //注意1
int mid = start + ((end - start) >> 1);
if(num[mid] == target)
return mid;
else if(num[mid] > target){
end = mid - 1; //注意2
}
else{
start = mid + 1; //注意3
}
}
return -1;
}
-
如果是start < end,那么当target等于num[num.length-1]时,会找不到该值。
-
因为num[mid] > target, 所以如果有num[index] == target, index一定小于mid,能不能写成end = mid呢?举例来说:num = {1, 2, 5, 7, 9}; 如果写成end = mid,当循环到start = 0, end = 0时(即num[start] = 1, num[end] = 1时),mid将永远等于0,此时end也将永远等于0,陷入死循环。也就是说寻找target = -2时,程序将死循环。
-
因为num[mid] < target, 所以如果有num[index] == target, index一定大于mid,能不能写成start = mid呢?举例来说:num = {1, 2, 5, 7, 9}; 如果写成start = mid,当循环到start = 3, end = 4时(即num[start] = 7, num[end] = 9时),mid将永远等于3,此时start也将永远等于3,陷入死循环。也就是说寻找target = 9时,程序将死循环。
5.3分块查找
分块查找又称索引顺序查找,它是一种性能介于顺序查找和折半查找之间的查找方法。分块查找由于只要求索引表是有序的,对块内节点没有排序要求,因此特别适合于节点动态变化的情况。
六.排序算法
6.1常见排序算法
稳定排序:
-
冒泡排序
— O(n²) -
插入排序
— O(n²) -
桶排序
— O(n); 需要 O(k) 额外空间 -
归并排序
— O(nlogn); 需要 O(n) 额外空间 -
二叉排序树排序
— O(n log n) 期望时间; O(n²)最坏时间; 需要 O(n) 额外空间 -
基数排序
— O(n·k); 需要 O(n) 额外空间
不稳定排序
-
选择排序
— O(n²) -
希尔排序
— O(nlogn) -
堆排序
— O(nlogn) -
快速排序
— O(nlogn) 期望时间, O(n²) 最坏情况; 对于大的、乱数串行一般相信是最快的已知排序
6.2交换排序
冒泡排序
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。冒泡排序总的平均时间复杂度为O(n^2)。冒泡排序是一种稳定排序算法。
- 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
void bubble_sort(int a[], int n)
{
int i, j, temp;
for (j = 0; j < n - 1; j++)
for (i = 0; i < n - 1 - j; i++)
{
if(a[i] > a[i + 1])
{
temp = a[i];
a[i] = a[i + 1];
a[i + 1] = temp;
}
}
}
6.3快速排序 快速排序-百度百科
快速排序是一种 不稳定 的排序算法,平均时间复杂度为 O(nlogn)。快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。 步骤为:
- 从数列中挑出一个元素,称为"基准"(pivot),
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
快排的时间花费主要在划分上,所以
- 最坏情况:时间复杂度为
O(n^2)
。因为最坏情况发生在每次划分过程产生的两个区间分别包含n-1
个元素和1
个元素的时候。- 最好情况:每次划分选取的基准都是当前无序区的中值。如果每次划分过程产生的区间大小都为n/2,则快速排序法运行就快得多了。
public void sort(int[] arr, int low, int high) {
int l = low;
int h = high;
int povit = arr[low];
while (l < h) {
while (l < h && arr[h] >= povit)
h--;
if (l < h) {
arr[l] = arr[h];
l++;
}
while (l < h && arr[l] <= povit)
l++;
if (l < h) {
arr[h] = arr[l];
h--;
}
}
arr[l] = povit;
System.out.print("l=" + (l + 1) + ";h=" + (h + 1) + ";povit=" + povit + "\n");
System.out.println(Arrays.toString(arr));
if (l - 1 > low) sort(arr, low, l - 1);
if (h + 1 < high) sort(arr, h + 1, high);
}
快排的优化
- 当待排序序列的长度分割到一定大小后,使用插入排序。
- 快排函数在函数尾部有两次递归操作,我们可以对其使用尾递归优化。优化后,可以缩减堆栈深度,由原来的O(n)缩减为O(logn),将会提高性能。
- 从左、中、右三个数中取中间值。
6.4插入排序
直接插入排序
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。 插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
void insert_sort(int* a, int len) {
for (int i = 1; i < len; ++i) {
int j = i - 1;
int temp = a[i];
while (j >= 0 && temp < a[j]) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = temp;
}
}
希尔排序
也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
void shell_sort(int* a, int len) {
int step = len / 2;
int temp;
while (step > 0) {
for (int i = step; i < len; ++i) {
temp = a[i];
int j = i - step;
while (j >= 0 && temp < a[j]) {
a[j + step] = a[j];
j -= step;
}
a[j + step] = temp;
}
step /= 2;
}
}
6.5选择排序
直接选择排序
首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。实际适用的场合非常罕见。
void selection_sort(int arr[], int len) {
int i, j, min, temp;
for (i = 0; i < len - 1; i++) {
min = i;
for (j = i + 1; j < len; j++)
if (arr[min] > arr[j])
min = j;
temp = arr[min];
arr[min] = arr[i];
arr[i] = temp;
}
}
6.6堆排序
堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
- 将数组分为有序区和无序区,在无序区中建立最大堆
- 将堆顶的数据与无序区末尾的数据交换
- 从后往前,直到所有数据排序完成
public void heapSort(int[] nums) {
for (int i = nums.length - 1; i >= 0; i--) {
maxHeap(nums, 0, i);
swap(nums, 0, i);
}
}
public void maxHeap(int[] heap, int start, int end) {
if (start == end) {
return;
}
int parent = start;
int childLeft = start * 2 + 1;
int childRight = childLeft + 1;
if (childLeft <= end) {
maxHeap(heap, childLeft, end);
if (heap[childLeft] > heap[parent]) {
swap(heap, parent, childLeft);
}
}
if (childRight <= end) {
maxHeap(heap, childRight, end);
if (heap[childRight] > heap[parent]) {
swap(heap, parent, childRight);
}
}
}
private void swap(int[] nums, int a, int b) {
int t = nums[a];
nums[a] = nums[b];
nums[b] = t;
}
6.7归并排序
归并排序采用分治的思想:
- Divide:将n个元素平均划分为各含n/2个元素的子序列;
- Conquer:递归的解决俩个规模为n/2的子问题;
- Combine:合并俩个已排序的子序列。
性能:时间复杂度总是为O(NlogN),空间复杂度也总为为O(N),算法与初始序列无关,排序是稳定的。
public void mergeSort(int[] array, int start, int end, int[] temp) {
if (start >= end) {
return;
}
int mid = (start + end) / 2;
mergeSort(array, start, mid, temp);
mergeSort(array, mid + 1, end, temp);
int f = start, s = mid + 1;
int t = 0;
while (f <= mid && s <= end) {
if (array[f] < array[s]) {
temp[t++] = array[f++];
} else {
temp[t++] = array[s++];
}
}
while (f <= mid) {
temp[t++] = array[f++];
}
while (s <= end) {
temp[t++] = array[s++];
}
for (int i = 0, j = start; i < t; i++) {
array[j++] = temp[i];
}
}
6.8基数排序
对于有d个关键字时,可以分别按关键字进行排序。有俩种方法:
- MSD:先从高位开始进行排序,在每个关键字上,可采用基数排序
- LSD:先从低位开始进行排序,在每个关键字上,可采用桶排序
即通过每个数的每位数字的大小来比较
//找出最大数字的位数
int maxNum(int arr[], int len) {
int _max = 0;
for (int i = 0; i < len; ++i) {
int d = 0;
int a = arr[i];
while (a) {
a /= 10;
d++;
}
if (_max < d) {
_max = d;
}
}
return _max;
}
void radixSort(int *arr, int len) {
int d = maxNum(arr, len);
int *temp = new int[len];
int count[10];
int radix = 1;
for (int i = 0; i < d; ++i) {
for (int j = 0; j < 10; ++j) {
count[j] = 0;
}
for (int k = 0; k < len; ++k) {
count[(arr[k] / radix) % 10]++;
}
for (int l = 1; l < 10; ++l) {
count[l] += count[l - 1];
}
for (int m = 0; m < len; ++m) {
int index = (arr[m] / radix) % 10;
temp[count[index] - 1] = arr[m];
count[index]--;
}
for (int n = 0; n < len; ++n) {
arr[n] = temp[n];
}
radix *= 10;
}
delete (temp);
}
6.9拓扑排序
在有向图中找拓扑序列的过程,就是拓扑排序。拓扑序列常常用于判定图是否有环。
- 从有向图中选择一个入度为0的结点,输出它。
- 将这个结点以及该结点出发的所有边从图中删除。
- 重复前两步,直到没有入度为0的点。
如果所有点都被输出,即存在一个拓扑序列,则图没有环。
七.跳跃表
跳跃列表是一种数据结构。它允许快速查询一个有序连续元素的数据链表。跳跃列表的平均查找和插入时间复杂度都是 O(log n)
,优于普通队列的 O(n)
。
快速查询是通过维护一个多层次的链表,且每一层链表中的元素是前一层链表元素的子集。一开始时,算法在最稀疏的层次进行搜索,直至需要查找的元素在该层两个相邻的元素中间。这时,算法将跳转到下一个层次,重复刚才的搜索,直到找到需要查找的元素为止。跳过的元素的方法可以是 随机性选择 或 确定性选择,其中前者更为常见。
在查找目标元素时,从顶层列表、头元素起步。算法沿着每层链表搜索,直至找到一个大于或等于目标的元素,或者到达当前层列表末尾。如果该元素等于目标元素,则表明该元素已被找到;如果该元素大于目标元素或已到达链表末尾,则退回到当前层的上一个元素,然后转入下一层进行搜索。
跳跃列表不像平衡树等数据结构那样提供对最坏情况的性能保证:由于用来建造跳跃列表采用随机选取元素进入更高层的方法,在小概率情况下会生成一个不平衡的跳跃列表(最坏情况例如最底层仅有一个元素进入了更高层,此时跳跃列表的查找与普通列表一致)。但是在实际中它通常工作良好,随机化平衡方案也比平衡二叉查找树等数据结构中使用的确定性平衡方案容易实现。跳跃列表在并行计算中也很有用:插入可以在跳跃列表不同的部分并行地进行,而不用对数据结构进行全局的重新平衡。
跳跃表插入一个元素:
实现
因为跳跃列表中的元素可以在多个列表中,所以每个元素可以有多于一个指针。跳跃列表的插入和删除的实现与普通的链表操作类似,但高层元素必须在进行多个链表中进行插入或删除。
package io.github.hadyang.leetcode.algo;
import lombok.Getter;
import lombok.Setter;
import java.util.Arrays;
import java.util.Random;
/**
* @author haoyang.shi
*/
public class SkipList<K extends Comparable<K>, V> {
@Getter
@Setter
static final class Node<K extends Comparable<K>, V> {
private K key;
private V value;
private Node<K, V> up, down, pre, next;
Node(K key, V value) {
this.key = key;
this.value = value;
}
@Override
public String toString() {
return "Node{" +
"key=" + key +
", value=" + value +
", hashcode=" + hashCode() +
", up=" + (up == null ? "null" : up.hashCode()) +
", down=" + (down == null ? "null" : down.hashCode()) +
", pre=" + (pre == null ? "null" : pre.hashCode()) +
", next=" + (next == null ? "null" : next.hashCode()) +
'}';
}
}
private Node<K, V> head;//k,v都是NULL
private Integer levels = 0;
private Integer length = 0;
private Random random = new Random(System.currentTimeMillis());
public SkipList() {
createNewLevel();
}
public void put(K key, V value) {
if (key == null || value == null) {
return;
}
Node<K, V> newNode = new Node<>(key, value);
insertNode(newNode);
}
private void insertNode(Node<K, V> newNode) {
Node<K, V> curNode = findNode(newNode.getKey());
if (curNode.getKey() == null) {
insertNext(curNode, newNode);
} else if (curNode.getKey().compareTo(newNode.getKey()) == 0) {
//update
curNode.setValue(newNode.getValue());
return;
} else {
insertNext(curNode, newNode);
}
int currentLevel = 1;
Node<K, V> oldTop = newNode;
while (random.nextInt(100) < 50) {
Node<K, V> newTop = new Node<>(newNode.getKey(), null);
if (currentLevel >= levels) {
createNewLevel();
}
while (curNode.getPre() != null && curNode.getUp() == null) {
curNode = curNode.getPre();
}
if (curNode.getUp() == null) {
continue;
}
curNode = curNode.getUp();
Node<K, V> curNodeNext = curNode.getNext();
curNode.setNext(newTop);
newTop.setPre(curNode);
newTop.setDown(oldTop);
oldTop.setUp(newTop);
newTop.setNext(curNodeNext);
oldTop = newTop;
currentLevel++;
}
}
private void createNewLevel() {
Node<K, V> newHead = new Node<>(null, null);
if (this.head == null) {
this.head = newHead;
this.levels++;
return;
}
this.head.setUp(newHead);
newHead.setDown(this.head);
this.head = newHead;
this.levels++;
}
private void insertNext(Node<K, V> curNode, Node<K, V> newNode) {
Node<K, V> curNodeNext = curNode.getNext();
newNode.setNext(curNodeNext);
if (curNodeNext != null) {
curNodeNext.setPre(newNode);
}
curNode.setNext(newNode);
newNode.setPre(curNode);
this.length++;
}
public V get(K key) {
Node<K, V> node = findNode(key);
if (key.equals(node.getKey())) {
return node.getValue();
}
return null;
}
private Node<K, V> findNode(K key) {
Node<K, V> curNode = this.head;
for (; ; ) {
while (curNode.getNext() != null && curNode.getNext().getKey().compareTo(key) <= 0) {
curNode = curNode.getNext();
}
if (curNode.getDown() != null) {
curNode = curNode.getDown();
} else {
break;
}
}
return curNode;
}
public void print() {
Node<K, V> curI = this.head;
String[][] strings = new String[levels][length + 1];
for (String[] string : strings) {
Arrays.fill(string, "0");
}
while (curI.getDown() != null) {
curI = curI.getDown();
}
System.out.println("levels:" + levels + "_" + "length:" + length);
int i = 0;
while (curI != null) {
Node<K, V> curJ = curI;
int j = levels - 1;
while (curJ != null) {
strings[j][i] = String.valueOf(curJ.getKey());
if (curJ.getUp() == null) {
break;
}
curJ = curJ.getUp();
j--;
}
if (curI.getNext() == null) {
break;
}
curI = curI.getNext();
i++;
}
for (String[] string : strings) {
System.out.println(Arrays.toString(string));
}
}
public static void main(String[] args) {
SkipList<Integer, String> skipList = new SkipList<>();
skipList.put(2, "B");
skipList.put(1, "A");
skipList.put(3, "C");
skipList.print();
System.out.println(skipList.get(2));
}
}
关于我
更多信息可以点击关于我 , 非常希望和大家一起交流 , 共同进步