沃尔什-哈达玛变换
2023-01-15 本文已影响0人
国宝级初学者
2^n阶哈达玛矩阵有如下形式:

哈达玛矩阵的最大优点在于它具有简单的递推关系, 即高阶矩阵可用两个低阶矩阵的克罗内克积(Kronecker Product)求得。因此常采用哈达玛排列定义的沃尔什变换。
离散沃尔什-哈达玛变换(DWHT)



式中,[Hn]为N阶哈达玛矩阵。
由哈达玛矩阵的特点可知,沃尔什-哈达玛变换的本质上是将离散序列f(x)的各项值的符号按一定规律改变后,进行加减运算, 因此,它比采用复数运算的DFT和采用余弦运算的DCT要简单得多。





从以上例子可看出,二维WHT具有能量集中的特性,而且原始数据中数字越是均匀分布,经变换后的数据越集中于矩阵的边角上。因此,二维WHT可用于压缩图像信息。
快速沃尔什变换(FWHT)
类似于FFT,WHT也有快速算法FWHT, 也可将输入序列f(x)按奇偶进行分组,分别进行WHT。FWHT的基本关系为:










WHT是将一个函数变换成取值为+1或-1的基本函数构成的级数,用它来逼近数字脉冲信号时要比FFT有利。
同时, WHT只需要进行实数运算,存储量比FFT要少得多, 运算速度也快得多。因此,WHT在图像传输、 通信技术和数据压缩中被广泛使用。