大数据

大数据||MapReduce之wordcount处理过程

2018-02-12  本文已影响18人  明明德撩码

文件分割

将文件拆分成splits,由于测试用的文件较小,所以每个文件为一个split,并将文件按行分割形成<key,value>对,下图所示。这一步由MapReduce框架自动完成,其中偏移量(即key值)包括了回车所占的字符数(Windows/Linux环境不同)。

image.png

map处理生成新的key value

将分割好的<key,value>对交给用户定义的map方法进行处理,生成新的<key,value>对,下图所示。

map排序

得到map方法输出的<key,value>对后,Mapper会将它们按照key值进行排序,得到Mapper的最终输出结果。


image.png

reduce处理

Reducer先对从Mapper接收的数据进行排序、分组,再交由用户自定义的reduce方法进行处理,得到新的<key,value>对,并作为WordCount的输出结果,

image.png

hive的底层就是MapReduce。学好它就可以调试甚至修改hive。

上一篇下一篇

猜你喜欢

热点阅读