数据结构与算法C++进阶阶段

算法:二分查找

2019-03-02  本文已影响12人  齐舞647

前言:最近小编在看《算法图解》,将会总结一系列算法相关的文章。
关于算法的系列文章,小编将准备分“三步”来编写:


本篇将介绍二分查找与大O表示法,并为后续的算法文章打下算法基础。

一、算法简介

算法,简单来说,就是一组完成任务的指令。任何代码片段都可视为算法。

算法的用途主要有两个方面:

算法的用途 目的
提高代码运行速度,优化业务逻辑 提高代码质量
解决实际应用问题 完成业务需求

二、二分查找

问题:假设有一个有序数组(前提:有序数组),我们要查询一个数在这个数组中的位置(index),我们应该如何查找?

先介绍一个简单暴力的查找方式:直接遍历一遍这个数组,找到对应的数后再返回index。这个方法我们称之为——简单查找。

2.1 简单查找:

直接遍历数组查找元素。很简单很暴力。

基于Python的算法:

def easy_search(list, item):
    for index in range(len(list)):
        if list[index] == item:
            return index
    return None

测评:
简单查找在运气好时(即遍历的第一个元素即为该数),只需要查找一次。
但是当如果所找元素在数组末尾时,就要一直遍历到最后一个元素才能找到那个数。n个元素的数组要找n次。

这显然效率会不高,这时候我们可以使用:二分查找法。

2.2 二分查找:

二分查找,顾名思义,每次查找将数组分成两部分,从中间开始找。

def binary_search(list, item):
    low = 0
    high = len(list) - 1

    while low <= high:
        mid = (low + high) / 2
        if list[mid] == item:
            return mid
        if list[mid] > item:
            high = mid - 1
        else:
            low = mid + 1
    return None

这样,每次循环就能舍去一半的元素,大大提高了查找的效率。这就是二分查找法。

三、大O表示法

时间复杂度由大O表示法描述。

运用简单查找算法,在n个元素的数组中查找一个数,情况最遭时,需要n步,所以简单查找的时间复杂度是O(n)

运用二分查找算法,在n个元素的数组中查找一个数,情况最遭时,需要(log n)步,所以二分查找的时间复杂度是O(log n)

工程源码:QiAlgorithms

上一篇下一篇

猜你喜欢

热点阅读