奥数自学研究

高中奥数 2022-03-03

2022-03-03  本文已影响0人  不为竞赛学奥数

2022-03-03-01

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P026 习题05)

设实数a_{1},a_{2},\cdots ,a_{100}满足:

(1)a_{1}\geqslant a_{2}\geqslant \cdots \geqslant a_{100}\geqslant 0;

(2)a_{1}+a_{2}\leqslant 100;

(3)a_{3}+a_{4}+\cdots +a_{100}\leqslant 100.

a_1^{2}+a_2^{2}+\cdots \cdots +a_{100}^{2}的最大值.

\begin{aligned} & a_{1}^{2}+a_{2}^{2}+\cdots+a_{100}^{2} \\ \leqslant & \left(100-a_{2}\right)^{2}+a_{2}^{2}+a_{3}^{2}+\cdots+a_{100}^{2} \\ \leqslant & 100^{2}-\left(a_{1}+a_{2}+\cdots+a_{100}\right) a_{2}+2 a_{2}^{2}+a_{3}^{2}+\cdots+a_{100}^{2} \\ =& 100^{2}-a_{2}\left(a_{1}-a_{2}\right)-a_{3}\left(a_{2}-a_{3}\right)-\cdots-a_{100}\left(a_{2}-a_{100}\right) \\ \leqslant & 100^{2} . \end{aligned}
等号成立,当a_{1}=100,a_{i}=0\left(i>1\right)或者a_{1}=a_{2}=a_{3}=a_{4}=50,a_{j}=0\left(j>4\right)时.

2022-03-03-02

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P026 习题06)

已知5n个实数r_{i}s_{i}t_{i}u_{i}v_{i}都大于1\left(1\leqslant i\leqslant n\right),记R=\dfrac{1}{n}\cdot\sum\limits_{i=1}^{n}r_{i},S=\dfrac{1}{n}\cdot\sum\limits_{i=1}^{n}s_{i},
T=\dfrac{1}{n}\cdot\sum\limits_{i=1}^{n}t_{i},U=\dfrac{1}{n}\cdot\sum\limits_{i=1}^{n}u_{i},V=\dfrac{1}{n}\cdot\sum\limits_{i=1}^{n}v_{i}.求证下述不等式成立:
\prod\limits_{i=1}^{n}\left(\dfrac{r_{i}s_{i}t_{i}u_{i}v_{i}+1}{r_{i}s_{i}t_{i}u_{i}v_{i}-1}\right)\geqslant \left(\dfrac{RSTUV+1}{RSTUV-1}\right)^{n}.

证明

先证明一个引理:引理:设x_{1},x_{2},\cdots ,x_{n}n个大于1的实数,A=\sqrt[n]{x_{1}x_{2}\cdots x_{n}},则\prod\limits_{i=1}^{n}\left(\dfrac{x_{i}+1}{x_{i}-1}\right)\geqslant\left(\dfrac{A+1}{A-1}\right)^{n}.

证明:不妨设x_{1}\leqslant x_{2}\leqslant \cdots \leqslant x_{n},则x_{1}\leqslant A\leqslant x_{n}.

用通分不难证明:\dfrac{\left(x_{1}+1\right)\left(x_{i}+1\right)}{\left(x_{1}-1\right)\left(x_{n}-1\right)}\geqslant \left(\dfrac{A+1}{A-1}\right)\cdot\left(\dfrac{\dfrac{x_{1}x_{n}}{A}+1}{\dfrac{x_{1}x_{n}}{A}-1}\right).

于是,\prod\limits_{i=1}^{n}\left(\dfrac{x_{i}+1}{x_{i}-1}\right)\geqslant \prod\limits_{i=2}^{n-1}\left(\dfrac{x_{i}+1}{x_{i}-1}\right)\left(\dfrac{\dfrac{x_{1}x_{n}}{A}+1}{\dfrac{x_{1}x_{n}}{A}-1}\right)\left(\dfrac{A+1}{A-1}\right).

再考虑剩下的n-1个实数:x_{2},x_{3},\cdots ,x_{n-1}x_{1}x_{n},它们的几何平均值仍为A,故这n-1个数中亦存在最大、最小值,且最大值不小于A,最小值不大于A.采取同上的做法,经过n-1次即可得:\prod\limits_{i=1}^{n}\left(\dfrac{x_{i}+1}{x_{i}-1}\right)\geqslant\left(\dfrac{A+1}{A-1}\right)^{n}.

下面证明原命题.令x_{i}=r_{i}s_{i}t_{i}u_{i}v_{i}\left(1\leqslant i\leqslant n\right),由引理可得
\prod\limits_{i=1}^{n}\left(\dfrac{r_{i}s_{i}t_{i}u_{i}v_{i}+1}{r_{i}s_{i}t_{i}u_{i}v_{i}-1}\right)\geqslant\left(\dfrac{B+1}{B-1}\right)^{n},
其中B=\sqrt[n]{\prod\limits_{i=1}^{n}\left(r_{i}s_{i}t_{i}u_{i}v_{i}\right)}.因此只需证明:\dfrac{B+1}{B-1}\geqslant \dfrac{RSTUV+1}{RSTUV-1},而
\begin{aligned} R S T U V &=\dfrac{1}{n} \cdot\left(\sum_{i=1}^{n} r_{i}\right) \cdot \dfrac{1}{n} \cdot\left(\sum\limits_{i=1}^{n} s_{i}\right) \cdot \dfrac{1}{n}\left(\sum\limits_{i=1}^{n} t_{i}\right) \cdot \dfrac{1}{n}\left(\sum\limits_{i=1}^{n} u_{i}\right) \cdot \dfrac{1}{n}\left(\sum\limits_{i=1}^{n} v_{i}\right) \\ & \geqslant \sqrt[n]{\prod\limits_{i=1}^{n} r_{i}} \cdot \sqrt[n]{\prod\limits_{i=1}^{n} s_{i}} \cdot \sqrt[n]{\prod\limits_{i=1}^{n} t_{i}} \cdot \sqrt[n]{\prod\limits_{i=1}^{n} u_{i}} \cdot \sqrt[n]{\prod\limits_{i=1}^{n} v_{i}}=B, \end{aligned}
\left(B-1\right)f\left(RRSTUV-1\right)-\left(B-1\right)\left(RSTUV+1\right)=2\left(RSTUV-B\right)\geqslant 0.

所以结论成立.原不等式得证.

注:我们也可以用Jensen不等式来证.

首先,不难证明,对任意a,b>1,有\left(\dfrac{a+1}{a-1}\right)\cdot\left(\dfrac{b+1}{b-1}\right)\geqslant\left(\dfrac{\sqrt{ab}+1}{\sqrt{ab}-1}\right)^{2},故函数y=\ln\left(\dfrac{e^{x}+1}{e^{x}-1}\right)在区间\left(0,+\infty\right)上是凸函数,于是
\prod\limits_{i=1}^{n}\left(\dfrac{r_{i} s_{i} t_{i} u_{i} v_{i}+1}{r_{i} s_{i} t_{i} u_{i} v_{i}-1}\right) \geqslant \dfrac{\sqrt[n]{\prod\limits_{i=1}^{n} r_{i} s_{i} t_{i} u_{i} v_{i}}+1}{\sqrt[n]{\prod\limits_{i=1}^{n} r_{i} s_{i} t_{i} u_{i} v_{i}}-1} \geqslant\left(\dfrac{R S T U V+1}{R S T U V-1}\right)^{n}.

2022-03-03-03

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P026 习题07)

kn是正整数,1\leqslant k<n;x_{1},x_{2},\cdots ,x_{k}k个正数,且知它们的和等于它们的积.求证:x_{1}^{n-1}+x_{2}^{n-1}+\cdots +x_{k}^{n-1}\geqslant kn.

证明

T=x_{1}x_{2}\cdots x_{k}=x_{1}+x_{2}+\cdots +x_{k}.由平均不等\dfrac{T}{k}\geqslant T^{\frac{1}{k}},x_{1}^{n-1}+x_{2}^{n-1}+\cdots +x_{k}^{n-1}\geqslant k\cdot T^{\frac{n-1}{k}}.因此,只需证明T_{\frac{n-1}{k}}\geqslant n.而\dfrac{T}{k}\geqslant T^{\frac{1}{k}}等价于T^{\frac{n-1}{k}}\geqslant k^{\frac{n-1}{k-1}},故只需证明:k^{\frac{n-1}{k-1}}\geqslant n,即k\geqslant n^{\frac{k-1}{n-1}}.事实上,k=\dfrac{\left(k-1\right)n+\left(n-k\right)\cdot 1}{n-1}\geqslant \sqrt[n-1]{n^{k-1}\cdot 1}=n^{\frac{k-1}{n-1}},因此结论成立.

2022-03-03-04

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P026 习题08)

如果a,b,c\in \mathbb{R},求证:
\left(a^{2}+ab+b^{2}\right)\left(b^{2}+bc+c^{2}\right)\left(c^{2}+ca+a^{2}\right)\geqslant \left(ab+bc+ca\right)^{3}.

证明

如果我们能证明:\dfrac{27}{6}\left(a+b\right)^{2}\left(b+c\right)^{2}\left(c+a\right)^{2}\geqslant \left(ab+bc+ca\right)^{2},则结论成立.令S_{1}=a+b+c,S_{2}=ab+bc+ca,S_{3}=abc.问题转化为去证明:27\left(S_{1}S_{2}-S_{3}\right)^{2}\geqslant 64S_{2}^{3}.

分两种情况加以讨论:

(1)若abc都是非负实数,则
27\left(S_{1}S_{2}-S_{3}\right)^{2}\geqslant 27\left(S_{1}S_{2}-\dfrac{1}{9}S_{1}S_{2}\right)^{2}=\dfrac{64}{3}S_{1}^{2}S_{2}^{2}\geqslant 64S_{2}^{3}.

(2)若abc中至少有一个为负数,由对称性,不妨假设a<0,b\geqslant 0,c\geqslant 0.设S_{2}>0(否则命题显然成立).此时S_{1}>0,S_{3}<0,故
\begin{aligned} & 27\left(S_{1} S_{2}-S_{3}\right)^{2}-64 S_{2}^{3}\\ >&27 S_{1}^{2} S_{2}^{2}-64 S_{2}^{3} \\ =& S_{2}^{2} \cdot\left(27 S_{1}^{2}-64 S_{2}\right) \\ =& S_{2}^{2} \cdot\left[27 a^{2}+22\left(b^{2}+c^{2}\right)+5(b-c)^{2}-10 a(b+c)\right] \\ >& 0. \end{aligned}
题中等号成立,当且仅当a=b=c.

上一篇 下一篇

猜你喜欢

热点阅读