flink

Process Function (Low-level Oper

2018-03-07  本文已影响41人  小C菜鸟

原文地址


The ProcessFunction

ProcessFunction是一个低级的流处理操作,可以访问所有(非循环)流应用程序的基本组件:

可以将ProcessFunction看做是具备访问keyed状态和定时器的FlatMapFunction。它通过invoked方法处理从输入流接收到的每个事件。

对于容错状态,ProcessFunction通过RuntimeContext访问Flink的keyed状态,类似于有状态的函数访问keyed状态。
定时器允许应用程序基于处理时间和事件时间响应变化。每次调用函数的 processElement(...)方法获得一个Context对象,它可以访问元素的事件时间戳,和对TimerService的访问。TimerService可以用来为将来的事件/处理时间注册回调。当定时器的达到定时时间时,会调用onTimer(...) 方法。
注意:您想访问keyed状态和定时器,则必须在键控流上应用ProcessFunction:

stream.keyBy(...).process(new MyProcessFunction())

Low-level Joins

为了在两个输入上实现低级别的操作,应用可以使用CoProcessFunction。。该函数绑定到两个不同的输入,并为不同的输入记录分别单独调用processElement1(…)和processElement2(…)。
实现低级别join通常遵循以下模式:

例如,当为客户数据保存状态时,你可能会join客户数据和财务交易。If you care about having complete and deterministic joins in the face of out-of-order events, you can use a timer to evaluate and emit the join for a trade when the watermark for the customer data stream has passed the time of that trade.

Example

下面的示例为每个键进行计数,并当超过一分钟(事件时间)没有更新key的计数,则下发key/计数对:

注意:这个简单的示例可以通过会话窗口实现。我们在这里使用ProcessFunction来说明它提供的基本模式。

import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.ProcessFunction.Context;
import org.apache.flink.streaming.api.functions.ProcessFunction.OnTimerContext;
import org.apache.flink.util.Collector;


// the source data stream
DataStream<Tuple2<String, String>> stream = ...;

// apply the process function onto a keyed stream
DataStream<Tuple2<String, Long>> result = stream
    .keyBy(0)
    .process(new CountWithTimeoutFunction());

/**
 * The data type stored in the state
 */
public class CountWithTimestamp {

    public String key;
    public long count;
    public long lastModified;
}

/**
 * The implementation of the ProcessFunction that maintains the count and timeouts
 */
public class CountWithTimeoutFunction extends ProcessFunction<Tuple2<String, String>, Tuple2<String, Long>> {

    /** The state that is maintained by this process function */
    private ValueState<CountWithTimestamp> state;

    @Override
    public void open(Configuration parameters) throws Exception {
        state = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", CountWithTimestamp.class));
    }

    @Override
    public void processElement(Tuple2<String, String> value, Context ctx, Collector<Tuple2<String, Long>> out)
            throws Exception {

        // retrieve the current count
        CountWithTimestamp current = state.value();
        if (current == null) {
            current = new CountWithTimestamp();
            current.key = value.f0;
        }

        // update the state's count
        current.count++;

        // set the state's timestamp to the record's assigned event time timestamp
        current.lastModified = ctx.timestamp();

        // write the state back
        state.update(current);

        // schedule the next timer 60 seconds from the current event time
        ctx.timerService().registerEventTimeTimer(current.lastModified + 60000);
    }

    @Override
    public void onTimer(long timestamp, OnTimerContext ctx, Collector<Tuple2<String, Long>> out)
            throws Exception {

        // get the state for the key that scheduled the timer
        CountWithTimestamp result = state.value();

        // check if this is an outdated timer or the latest timer
        if (timestamp == result.lastModified + 60000) {
            // emit the state on timeout
            out.collect(new Tuple2<String, Long>(result.key, result.count));
        }
    }
}

注意:在Flink1.4.0之前,当调用来自处理时间的定时器时,ProcessFunction.onTimer()方法设置当前处理时间为事件时间戳。这种行为非常微妙,用户可能不会注意到。嗯,这是有害的,因为处理时间是不确定的并且不与水位对齐。此外,用户实现的逻辑依赖于这个错误的时间戳很可能是无意的错误。因此我们决定修复它。在升级到1.4.0时,使用这个错误事件时间戳的Flink作业将会失败,用户应该将他们的工作调整为正确的逻辑。

上一篇 下一篇

猜你喜欢

热点阅读