安装使用QTL-seqr
2018-11-09 本文已影响52人
chaimol
QTL-seqr是一个R包。官方文件地址
qtl-seqr参数详解
安装流程
在R环境里
installed.packages(“devtools”) #安装devtools
library(devtools)
install_github("bmansfeld/QTLseqr") #使用devtools安装QTLseqr
目前版本号:QTLseqr v0.7.3
#load the package
library("QTLseqr")
#Set sample and file names
LowBulk <- "119-8"
HighBulk <- "2447-20"
file <- "common.table"
#Choose which chromosomes will be included in the analysis (i.e. exclude smaller contigs)
Chroms <- paste0(rep("", 10), 1:10)
#Import SNP data from file
df <-
importFromGATK(
file = file,
highBulk = HighBulk,
lowBulk = LowBulk,
chromList = Chroms
)
#Filter SNPs based on some criteria
df_filt <-
filterSNPs(
SNPset = df,
refAlleleFreq = 0.20,
minTotalDepth = 100,
maxTotalDepth = 400,
minSampleDepth = 40,
minGQ = 99
)
#Run G' analysis
df_filt <- runGprimeAnalysis(
SNPset = df_filt,
windowSize = 1e6,
outlierFilter = "deltaSNP")
#Run QTLseq analysis
df_filt <- runQTLseqAnalysis(
SNPset = df_filt,
windowSize = 1e6,
popStruc = "F2",
bulkSize = c(30, 30),
replications = 10000,
intervals = c(95, 99)
)
#Plot
plotQTLStats(SNPset = df_filt, var = "Gprime", plotThreshold = TRUE, q = 0.01)
plotQTLStats(SNPset = df_filt, var = "deltaSNP", plotIntervals = TRUE)
#export summary CSV
getQTLTable(SNPset = df_filt, alpha = 0.01, export = TRUE, fileName = "my_BSA_QTL.csv")