☆啃碎并发(六):Java线程同步与实现
0 前言
为何要使用Java线程同步? Java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时,将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用,从而保证了该变量的唯一性和准确性。
但其并发编程的根本,就是使线程间进行正确的通信。其中两个比较重要的关键点,如下:
- 线程通信:重点关注线程同步的几种方式;
- 正确通信:重点关注是否有线程安全问题;
Java中提供了很多线程同步操作,比如:synchronized关键字、wait/notifyAll、ReentrantLock、Condition、一些并发包下的工具类、Semaphore,ThreadLocal、AbstractQueuedSynchronizer等。本文主要说明一下这几种同步方式的使用及优劣。
1 ReentrantLock可重入锁
自JDK5开始,新增了Lock接口以及它的一个实现类ReentrantLock。ReentrantLock可重入锁是J.U.C包内置的一个锁对象,可以用来实现同步,基本使用方法如下:
public class ReentrantLockTest {
private ReentrantLock lock = new ReentrantLock();
public void execute() {
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + " do something synchronize");
try {
Thread.sleep(5000l);
} catch (InterruptedException e) {
System.err.println(Thread.currentThread().getName() + " interrupted");
Thread.currentThread().interrupt();
}
} finally {
lock.unlock();
}
}
public static void main(String[] args) {
ReentrantLockTest reentrantLockTest = new ReentrantLockTest();
Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
reentrantLockTest.execute();
}
});
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
reentrantLockTest.execute();
}
});
thread1.start();
thread2.start();
}
}
上面例子表示 同一时间段只能有1个线程执行execute方法,输出如下:
Thread-0 do something synchronize
// 隔了5秒钟 输入下面
Thread-1 do something synchronize
可重入锁中可重入表示的意义在于 对于同一个线程,可以继续调用加锁的方法,而不会被挂起。可重入锁内部维护一个计数器,对于同一个线程调用lock方法,计数器+1,调用unlock方法,计数器-1。
举个例子再次说明一下可重入的意思:在一个加锁方法execute中调用另外一个加锁方法anotherLock并不会被挂起,可以直接调用(调用execute方法时计数器+1,然后内部又调用了anotherLock方法,计数器+1,变成了2):
public void execute() {
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + " do something synchronize");
try {
anotherLock();
Thread.sleep(5000l);
} catch (InterruptedException e) {
System.err.println(Thread.currentThread().getName() + " interrupted");
Thread.currentThread().interrupt();
}
} finally {
lock.unlock();
}
}
public void anotherLock() {
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + " invoke anotherLock");
} finally {
lock.unlock();
}
}
输出:
Thread-0 do something synchronize
Thread-0 invoke anotherLock
// 隔了5秒钟 输入下面
Thread-1 do something synchronize
Thread-1 invoke anotherLock
2 synchronized
synchronized跟ReentrantLock一样,也支持可重入锁。但是它是 一个关键字,是一种语法级别的同步方式,称为内置锁:
public class SynchronizedKeyWordTest {
public synchronized void execute() {
System.out.println(Thread.currentThread().getName() + " do something synchronize");
try {
anotherLock();
Thread.sleep(5000l);
} catch (InterruptedException e) {
System.err.println(Thread.currentThread().getName() + " interrupted");
Thread.currentThread().interrupt();
}
}
public synchronized void anotherLock() {
System.out.println(Thread.currentThread().getName() + " invoke anotherLock");
}
public static void main(String[] args) {
SynchronizedKeyWordTest reentrantLockTest = new SynchronizedKeyWordTest();
Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
reentrantLockTest.execute();
}
});
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
reentrantLockTest.execute();
}
});
thread1.start();
thread2.start();
}
}
输出结果跟ReentrantLock一样,这个例子说明内置锁可以作用在方法上。synchronized关键字也可以修饰静态方法,此时如果调用该静态方法,将会锁住整个类。
同步是一种高开销的操作,因此应该尽量减少同步的内容。通常没有必要同步整个方法,使用synchronized代码块同步关键代码即可。
synchronized跟ReentrantLock相比,有几点局限性:
- 加锁的时候不能设置超时。ReentrantLock有提供tryLock方法,可以设置超时时间,如果超过了这个时间并且没有获取到锁,就会放弃,而synchronized却没有这种功能;
- ReentrantLock可以使用多个Condition,而synchronized却只能有1个
- 不能中断一个试图获得锁的线程;
- ReentrantLock可以选择公平锁和非公平锁;
- ReentrantLock可以获得正在等待线程的个数,计数器等;
所以,Lock的操作与synchronized相比,灵活性更高,而且Lock提供多种方式获取锁,有Lock、ReadWriteLock接口,以及实现这两个接口的ReentrantLock类、ReentrantReadWriteLock类。
关于Lock对象和synchronized关键字选择的考量:
- 最好两个都不用,使用一种java.util.concurrent包提供的机制,能够帮助用户处理所有与锁相关的代码。
- 如果synchronized关键字能满足用户的需求,就用synchronized,因为它能简化代码。
- 如果需要更高级的功能,就用ReentrantLock类,此时要注意及时释放锁,否则会出现死锁,通常在finally代码释放锁。
在性能考量上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。
3 Condition条件对象
Condition条件对象的意义在于 对于一个已经获取Lock锁的线程,如果还需要等待其他条件才能继续执行的情况下,才会使用Condition条件对象。
Condition可以替代传统的线程间通信,用await()替换wait(),用signal()替换notify(),用signalAll()替换notifyAll()。
为什么方法名不直接叫wait()/notify()/nofityAll()?因为Object的这几个方法是final的,不可重写!
public class ConditionTest {
public static void main(String[] args) {
ReentrantLock lock = new ReentrantLock();
Condition condition = lock.newCondition();
Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + " run");
System.out.println(Thread.currentThread().getName() + " wait for condition");
try {
condition.await();
System.out.println(Thread.currentThread().getName() + " continue");
} catch (InterruptedException e) {
System.err.println(Thread.currentThread().getName() + " interrupted");
Thread.currentThread().interrupt();
}
} finally {
lock.unlock();
}
}
});
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + " run");
System.out.println(Thread.currentThread().getName() + " sleep 5 secs");
try {
Thread.sleep(5000l);
} catch (InterruptedException e) {
System.err.println(Thread.currentThread().getName() + " interrupted");
Thread.currentThread().interrupt();
}
condition.signalAll();
} finally {
lock.unlock();
}
}
});
thread1.start();
thread2.start();
}
}
这个例子中thread1执行到condition.await()时,当前线程会被挂起,直到thread2调用了condition.signalAll()方法之后,thread1才会重新被激活执行。
这里需要注意的是thread1调用Condition的await方法之后,thread1线程释放锁,然后马上加入到Condition的等待队列,由于thread1释放了锁,thread2获得锁并执行,thread2执行signalAll方法之后,Condition中的等待队列thread1被取出并加入到AQS中,接下来thread2执行完毕之后释放锁,由于thread1已经在AQS的等待队列中,所以thread1被唤醒,继续执行。
传统线程的通信方式,Condition都可以实现。Condition的强大之处在于它可以为多个线程间建立不同的Condition。
注意,Condition是被绑定到Lock上的,要创建一个Lock的Condition必须用newCondition()方法。
4 wait¬ify/notifyAll方式
Java线程的状态转换图与相关方法,如下:
线程状态转换图在图中,红框标识的部分方法,可以认为已过时,不再使用。上图中的方法能够参与到线程同步中的方法,如下:
-
wait、notify、notifyAll方法:线程中通信可以使用的方法。线程中调用了wait方法,则进入阻塞状态,只有等另一个线程调用与wait同一个对象的notify方法。这里有个特殊的地方,调用wait或者notify,前提是需要获取锁,也就是说,需要在同步块中做以上操作。
wait/notifyAll方式跟ReentrantLock/Condition方式的原理是一样的。
Java中每个对象都拥有一个内置锁,在内置锁中调用wait,notify方法相当于调用锁的Condition条件对象的await和signalAll方法。
public class WaitNotifyAllTest { public synchronized void doWait() { System.out.println(Thread.currentThread().getName() + " run"); System.out.println(Thread.currentThread().getName() + " wait for condition"); try { this.wait(); System.out.println(Thread.currentThread().getName() + " continue"); } catch (InterruptedException e) { System.err.println(Thread.currentThread().getName() + " interrupted"); Thread.currentThread().interrupt(); } } public synchronized void doNotify() { try { System.out.println(Thread.currentThread().getName() + " run"); System.out.println(Thread.currentThread().getName() + " sleep 5 secs"); Thread.sleep(5000l); this.notifyAll(); } catch (InterruptedException e) { System.err.println(Thread.currentThread().getName() + " interrupted"); Thread.currentThread().interrupt(); } } public static void main(String[] args) { WaitNotifyAllTest waitNotifyAllTest = new WaitNotifyAllTest(); Thread thread1 = new Thread(new Runnable() { @Override public void run() { waitNotifyAllTest.doWait(); } }); Thread thread2 = new Thread(new Runnable() { @Override public void run() { waitNotifyAllTest.doNotify(); } }); thread1.start(); thread2.start(); } }
这里需要注意的是 调用wait/notifyAll方法的时候一定要获得当前线程的锁,否则会发生IllegalMonitorStateException异常。
-
join方法:该方法主要作用是在该线程中的run方法结束后,才往下执行。
package com.thread.simple; public class ThreadJoin { public static void main(String[] args) { Thread thread= new Thread(new Runnable() { @Override public void run() { System.err.println("线程"+Thread.currentThread().getId()+" 打印信息"); } }); thread.start(); try { thread.join(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.err.println("主线程打印信息"); } }
-
yield方法:线程本身的调度方法,使用时线程可以在run方法执行完毕时,调用该方法,告知线程已可以出让CPU资源。
public class Test1 { public static void main(String[] args) throws InterruptedException { new MyThread("低级", 1).start(); new MyThread("中级", 5).start(); new MyThread("高级", 10).start(); } } class MyThread extends Thread { public MyThread(String name, int pro) { super(name);// 设置线程的名称 this.setPriority(pro);// 设置优先级 } @Override public void run() { for (int i = 0; i < 30; i++) { System.out.println(this.getName() + "线程第" + i + "次执行!"); if (i % 5 == 0) Thread.yield(); } } }
-
sleep方法:通过sleep(millis)使线程进入休眠一段时间,该方法在指定的时间内无法被唤醒,同时也不会释放对象锁;
/** * 可以明显看到打印的数字在时间上有些许的间隔 */ public class Test1 { public static void main(String[] args) throws InterruptedException { for(int i=0;i<100;i++){ System.out.println("main"+i); Thread.sleep(100); } } }
sleep方法告诉操作系统 至少在指定时间内不需为线程调度器为该线程分配执行时间片,并不释放锁(如果当前已经持有锁)。实际上,调用sleep方法时并不要求持有任何锁。
所以,sleep方法并不需要持有任何形式的锁,也就不需要包裹在synchronized中。
5 ThreadLocal
ThreadLocal是一种把变量放到线程本地的方式来实现线程同步的。比如:SimpleDateFormat不是一个线程安全的类,可以使用ThreadLocal实现同步,如下:
public class ThreadLocalTest {
private static ThreadLocal<SimpleDateFormat> dateFormatThreadLocal = new ThreadLocal<SimpleDateFormat>() {
@Override
protected SimpleDateFormat initialValue() {
return new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
}
};
public static void main(String[] args) {
Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
Date date = new Date();
System.out.println(dateFormatThreadLocal.get().format(date));
}
});
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
Date date = new Date();
System.out.println(dateFormatThreadLocal.get().format(date));
}
});
thread1.start();
thread2.start();
}
}
为何SimpleDateFormat不是线程安全的类?具体请参考:
ThreadLocal与同步机制的对比选择:
- ThreadLocal与同步机制都是 为了解决多线程中相同变量的访问冲突问题。
- 前者采用以 "空间换时间" 的方法,后者采用以 "时间换空间" 的方式。
6 volatile修饰变量
volatile关键字为域变量的访问提供了一种免锁机制,使用volatile修饰域相当于告诉虚拟机该域可能会被其他线程更新,因此每次使用该域就要重新计算,而不是使用寄存器中的值,volatile不会提供任何原子操作,它也不能用来修饰final类型的变量。
//只给出要修改的代码,其余代码与上同
public class Bank {
//需要同步的变量加上volatile
private volatile int account = 100;
public int getAccount() {
return account;
}
//这里不再需要synchronized
public void save(int money) {
account += money;
}
}
多线程中的非同步问题主要出现在对域的读写上,如果让域自身避免这个问题,则就不需要修改操作该域的方法。用final域,有锁保护的域和volatile域可以避免非同步的问题。
7 Semaphore信号量
Semaphore信号量被用于控制特定资源在同一个时间被访问的个数。类似连接池的概念,保证资源可以被合理的使用。可以使用构造器初始化资源个数:
public class SemaphoreTest {
private static Semaphore semaphore = new Semaphore(2);
public static void main(String[] args) {
for(int i = 0; i < 5; i ++) {
new Thread(new Runnable() {
@Override
public void run() {
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + " " + new Date());
Thread.sleep(5000l);
semaphore.release();
} catch (InterruptedException e) {
System.err.println(Thread.currentThread().getName() + " interrupted");
}
}
}).start();
}
}
}
输出:
Thread-1 Mon Apr 18 18:03:46 CST 2016
Thread-0 Mon Apr 18 18:03:46 CST 2016
Thread-3 Mon Apr 18 18:03:51 CST 2016
Thread-2 Mon Apr 18 18:03:51 CST 2016
Thread-4 Mon Apr 18 18:03:56 CST 2016
8 并发包下的工具类
8.1 CountDownLatch
CountDownLatch是一个计数器,它的构造方法中需要设置一个数值,用来设定计数的次数。每次调用countDown()方法之后,这个计数器都会减去1,CountDownLatch会一直阻塞着调用await()方法的线程,直到计数器的值变为0。
public class CountDownLatchTest {
public static void main(String[] args) {
CountDownLatch countDownLatch = new CountDownLatch(5);
for(int i = 0; i < 5; i ++) {
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + " " + new Date() + " run");
try {
Thread.sleep(5000l);
} catch (InterruptedException e) {
e.printStackTrace();
}
countDownLatch.countDown();
}
}).start();
}
try {
countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("all thread over");
}
}
输出:
Thread-2 Mon Apr 18 18:18:30 CST 2016 run
Thread-3 Mon Apr 18 18:18:30 CST 2016 run
Thread-4 Mon Apr 18 18:18:30 CST 2016 run
Thread-0 Mon Apr 18 18:18:30 CST 2016 run
Thread-1 Mon Apr 18 18:18:30 CST 2016 run
all thread over
8.2 CyclicBarrier
CyclicBarrier阻塞调用的线程,直到条件满足时,阻塞的线程同时被打开。
调用await()方法的时候,这个线程就会被阻塞,当调用await()的线程数量到达屏障数的时候,主线程就会取消所有被阻塞线程的状态。
在CyclicBarrier的构造方法中,还可以设置一个barrierAction。在所有的屏障都到达之后,会启动一个线程来运行这里面的代码。
public class CyclicBarrierTest {
public static void main(String[] args) {
Random random = new Random();
CyclicBarrier cyclicBarrier = new CyclicBarrier(5);
for(int i = 0; i < 5; i ++) {
new Thread(new Runnable() {
@Override
public void run() {
int secs = random.nextInt(5);
System.out.println(Thread.currentThread().getName() + " " + new Date() + " run, sleep " + secs + " secs");
try {
Thread.sleep(secs * 1000);
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " " + new Date() + " runs over");
}
}).start();
}
}
}
相比CountDownLatch,CyclicBarrier是可以被循环使用的,而且遇到线程中断等情况时,还可以利用reset()方法,重置计数器,从这些方面来说,CyclicBarrier会比CountDownLatch更加灵活一些。
9 使用原子变量实现线程同步
有时需要使用线程同步的根本原因在于 对普通变量的操作不是原子的。那么什么是原子操作呢?
原子操作就是指将读取变量值、修改变量值、保存变量值看成一个整体来操作
即-这几种行为要么同时完成,要么都不完成。
在java.util.concurrent.atomic包中提供了创建原子类型变量的工具类,使用该类可以简化线程同步。比如:其中AtomicInteger以原子方式更新int的值:
class Bank {
private AtomicInteger account = new AtomicInteger(100);
public AtomicInteger getAccount() {
return account;
}
public void save(int money) {
account.addAndGet(money);
}
}
10 AbstractQueuedSynchronizer
AQS是很多同步工具类的基础,比如:ReentrantLock里的公平锁和非公平锁,Semaphore里的公平锁和非公平锁,CountDownLatch里的锁等他们的底层都是使用AbstractQueuedSynchronizer完成的。
基于AbstractQueuedSynchronizer自定义实现一个独占锁:
public class MySynchronizer extends AbstractQueuedSynchronizer {
@Override
protected boolean tryAcquire(int arg) {
if(compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
@Override
protected boolean tryRelease(int arg) {
setState(0);
setExclusiveOwnerThread(null);
return true;
}
public void lock() {
acquire(1);
}
public void unlock() {
release(1);
}
public static void main(String[] args) {
MySynchronizer mySynchronizer = new MySynchronizer();
Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
mySynchronizer.lock();
try {
System.out.println(Thread.currentThread().getName() + " run");
System.out.println(Thread.currentThread().getName() + " will sleep 5 secs");
try {
Thread.sleep(5000l);
System.out.println(Thread.currentThread().getName() + " continue");
} catch (InterruptedException e) {
System.err.println(Thread.currentThread().getName() + " interrupted");
Thread.currentThread().interrupt();
}
} finally {
mySynchronizer.unlock();
}
}
});
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
mySynchronizer.lock();
try {
System.out.println(Thread.currentThread().getName() + " run");
} finally {
mySynchronizer.unlock();
}
}
});
thread1.start();
thread2.start();
}
}
11 使用阻塞队列实现线程同步
前面几种同步方式都是基于底层实现的线程同步,但是在实际开发当中,应当尽量远离底层结构。本节主要是使用LinkedBlockingQueue<E>来实现线程的同步。
LinkedBlockingQueue<E>是一个基于链表的队列,先进先出的顺序(FIFO),范围任意的blocking queue。
package com.xhj.thread;
import java.util.Random;
import java.util.concurrent.LinkedBlockingQueue;
/**
* 用阻塞队列实现线程同步 LinkedBlockingQueue的使用
*/
public class BlockingSynchronizedThread {
/**
* 定义一个阻塞队列用来存储生产出来的商品
*/
private LinkedBlockingQueue<Integer> queue = new LinkedBlockingQueue<Integer>();
/**
* 定义生产商品个数
*/
private static final int size = 10;
/**
* 定义启动线程的标志,为0时,启动生产商品的线程;为1时,启动消费商品的线程
*/
private int flag = 0;
private class LinkBlockThread implements Runnable {
@Override
public void run() {
int new_flag = flag++;
System.out.println("启动线程 " + new_flag);
if (new_flag == 0) {
for (int i = 0; i < size; i++) {
int b = new Random().nextInt(255);
System.out.println("生产商品:" + b + "号");
try {
queue.put(b);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println("仓库中还有商品:" + queue.size() + "个");
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
} else {
for (int i = 0; i < size / 2; i++) {
try {
int n = queue.take();
System.out.println("消费者买去了" + n + "号商品");
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println("仓库中还有商品:" + queue.size() + "个");
try {
Thread.sleep(100);
} catch (Exception e) {
// TODO: handle exception
}
}
}
}
}
public static void main(String[] args) {
BlockingSynchronizedThread bst = new BlockingSynchronizedThread();
LinkBlockThread lbt = bst.new LinkBlockThread();
Thread thread1 = new Thread(lbt);
Thread thread2 = new Thread(lbt);
thread1.start();
thread2.start();
}
}