位运算和数学
2019-03-16 本文已影响0人
一酷到底
pow(x,n)
double myPow(double x, int n) {
int res=1;
int i = n; //不能用abs
for(; i != 0; i /= 2){
if(i % 2 != 0){
res *= x;
}
x *= x;
}
return n<0? 1/res :res;
}
二进制中1的个数
n = 5(0101)时,返回2,n = 15(1111)时,返回4
int BitCount2(unsigned int n)
{
unsigned int c =0 ;
for (c =0; n; ++c)
{
n &= (n -1) ; // 清除最低位的1
}
return c ;
}
1-n中1的次数
输入13,输出6
1,10,11,12,13
两种方法,一种是从1到n遍历,每次通过对10求余数判断整数的个位数字是不是1,大于10的除以10之后再判断。我们对每个数字都要做除法和求余运算以求出该数字中1出现的次数。如果输入数字n,n有O(logn)位,我们需要判断每一位是不是1,那么时间复杂度为O(n*logn)。
第二种方法是数学之美上面提出的方法,设定整数点(如1、10、100等等)作为位置点i(对应n的各位、十位、百位等等),分别对每个数位上有多少包含1的点进行分析。
- 根据设定的整数位置,对n进行分割,分为两部分,高位n/i,低位n%i
- 当i表示百位,且百位对应的数>=2,如n=31456,i=100,则a=314,b=56,此时百位为1的次数有a/10+1=32(最高两位0~31),每一次都包含100个连续的点,即共有(a/10+1)*100个点的百位为1
- 当i表示百位,且百位对应的数为1,如n=31156,i=100,则a=311,b=56,此时百位对应的就是1,则共有a/10(最高两位0-30)次是包含100个连续点,当最高两位为31(即a=311),本次只对应局部点00~56,共b+1次,所有点加起来共有(a/10*100)+(b+1),这些点百位对应为1
- 当i表示百位,且百位对应的数为0,如n=31056,i=100,则a=310,b=56,此时百位为1的次数有a/10=31(最高两位0~30)
- 综合以上三种情况,当百位对应0或>=2时,有(a+8)/10次包含所有100个点,还有当百位为1(a%10==1),需要增加局部点b+1
- 之所以补8,是因为当百位为0,则a/10==(a+8)/10,当百位>=2,补8会产生进位位,效果等同于(a/10+1)
int NumberOf1Between1AndN_Solution(int n)
{
int count = 0;
long long i = 1;
for(i = 1; i <= n; i *= 10)
{
//i表示当前分析的是哪一个数位
int a = n / i, b = n % i;
count = count + (a + 8) / 10 * i + (a % 10 == 1) * (b + 1);
}
return count;
}
丑数
质因子只包含2,3,5的称为丑数;
判断丑数的方法:除以2除到不能除为止,然后除以3,除到不能除为止,然后除以5,除到不能除为止,最后结果,商是1,余数是0,即为丑数。
int GetUglyNumber_Solution(int index) {
if (index<0) return 0;
if (index==1) return 1;
vector<int>k(index);
k[0]=1;
int num2=0,num3=0,num5=0;
for(int i=1;i<index;++i) {
k[i]=min(k[num2]*2,min(k[num3]*3,k[num5]*5));
if(k[i]==k[num2]*2) num2++;
if(k[i]==k[num3]*3) num3++;
if(k[i]==k[num5]*5) num5++;
}
return k[index-1];
}
不用加减乘除的加法
首先看十进制是如何做的: 5+7=12,三步走
相加各位的值,不算进位,得到5 + 7 = 2(不算进位)
计算进位值,得到10. 如果这一步的进位值为0,那么第一步得到的值就是最终结果。
重复上述两步,只是相加的值变成上述两步的得到的结果2和10,得到12
相加各位的值,不算进位,得到010,二进制每位相加就相当于各位做异或操作,101^111=010
计算进位值,得到1010,相当于各位做与操作得到101,再向左移一位得到1010,(101&111)<<1。
int Add(int left, int right)
{
int temp;
while(right != 0)
{
temp = left ^ right; // 计算不带进位的情况
right = (left & right) <<1; // 计算带进位的情况
left = temp;
// now left = 不带进位的情况, right = 带进位的情况
}
return left;
}
构建乘积数组
给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0]A[1]...A[i-1]A[i+1]...A[n-1]。不能使用除法
思路:分两步算,先算B[i]=A[0]A[1]...A[i-1],再算B[i]=B[i]A[i+1]...A[n-1]
public int[] multiply(int[] A) {
if (A == null) {
return null;
}
int[] B = new int[A.length];
if (B.length == 0) {
return B;
}
B[0] = 1;
//先计算了 B[i] = A[0]*A[1]*A[2]*...*A[i-1]
for (int i = 1; i < A.length; i++) {
B[i] = A[i - 1] * B[i - 1];
}
//后部分:
int tmp = 1;
for (int i = A.length - 1; i >= 0; i--) {
B[i] = tmp * B[i];
tmp *= A[i];
}
return B;
}
不用乘除,if else,for while,计算1+2...+n
int Sum(int n)
{
int ret = 0;
n == 0 || (ret = Sum(n-1));
return n + ret;
}