sqlalchemy使用及序列化

2019-10-01  本文已影响0人  barriers

1创建model

config.py

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

# 设置最大连接数为5个
engine = create_engine("postgresql+psycopg2://username:password@host:port/database", max_overflow=5, encoding='utf-8')
Base = declarative_base()
session_maker = sessionmaker(bind=engine)
# 获取数据库会话
session = session_maker()

model.py

import datetime
from sqlalchemy import Column, Integer, ForeignKey, UniqueConstraint, Index, String, JSON, DateTime
from sqlalchemy.orm import relationship
from tools.config import Base


class GridAIrQuality(Base):
    # 表名
    __tablename__ = 'grid_air_quality'
    # 表格参数设置,此处设置唯一键
    __table_args__ = (
        UniqueConstraint(
            'published_at',
            'grid_id',
            name='grid_weather_unique_index'
        ),
    )
    # 表格的字段
    id = Column(Integer, primary_key=True, autoincrement=True)
    # 设置外键
    grid_id = Column(Integer, ForeignKey('grid.id'))
    data = Column(JSON)
    published_at = Column(DateTime)

    # 设置表格的手动序列化实现,不推荐
    def to_dict(self):
        return {
            'id': self.id,
            'data': self.data,
            'grid_id': self.grid_id,
            # 'grid': [i.to_json() for i in self.grid],
            # 获取它关联的其他表的信息并调用对象方法序列化
            'grid': self.grid.to_json(),
            'published_at': datetime.datetime.strftime(self.published_at, '%Y-%m-%d %H:%M:%S')
        }


class Grid(Base):
    __tablename__ = 'grid'
    id = Column(Integer, primary_key=True, autoincrement=True)
    size = Column(Integer)
    area = Column(Integer)
    location = Column(String(512))
    district = Column(String(32))
    remark = Column(String(32))
    row = Column(Integer)
    column = Column(Integer)
    bottom_left_coord = Column(JSON)
    top_right_coord = Column(JSON)
    center_coord = Column(JSON)
    created_at = Column(DateTime)
    updated_at = Column(DateTime)
    tags = Column(String(128))
    operator = Column(String(32))
    name = Column(String(32))
    area_ids = Column(String(32))
    grid_code = Column(String(32))
    # 设置关联键和反向引用描述
    grid_air_quality = relationship('GridAIrQuality', backref='grid')

    def to_json(self):
        return {
            'id': self.id,
            'size': self.size,
            'area': self.area,
            'location': self.location,
            'district': self.district,
            'remark': self.remark,
            'row': self.row,
            'column': self.column,
            'bottom_left_coord': self.bottom_left_coord,
            'top_right_coord': self.top_right_coord,
            'center_coord': self.center_coord,
            'created_at': datetime.datetime.strftime(self.created_at, '%Y-%m-%d %H:%M:%S'),
            'updated_at': datetime.datetime.strftime(self.updated_at, '%Y-%m-%d %H:%M:%S'),
            'tags': self.tags,
            'operator': self.operator,
            'name': self.name,
            'area_ids': self.area_ids,
            'grid_code': self.grid_code,
        }

2使用model进行查询

查询中,对查询结果用all(),表示取所有,用one()或者first()表示取第一个;
联合条件查询and_,or_需要使用filter进行筛选,而单个查询既能使用filter,也可以使用filter_by进行筛选,用filter筛选需要使用类.字段==的形式进行筛选,而filter_by直接使用字段=进行筛选即可
use.py

from config import session
from model import GridAIrQuality, Grid

gridHourAQData = session.query(GridAIrQuality).filter(GridAIrQuality.published_at<='2019-05-05', GridAIrQuality.published_at>='2019-05-01').all()
# 调用自定义对象方法进行序列化
gridHourAQData[0].to_dict()

3使用marshmallow进行序列化

form.py

from datetime import datetime
from marshmallow import Schema, fields, pprint
    
class GridSchema(Schema):
    id = fields.Integer()
    size = fields.Integer()
    area = fields.Integer()
    location = fields.String()
    district = fields.String()
    remark = fields.String()
    row = fields.Integer()
    column = fields.Integer()
    bottom_left_coord = fields.Dict()
    top_right_coord = fields.Dict()
    center_coord = fields.Dict()
    created_at = fields.Function(lambda obj: datetime.strftime(obj.created_at, '%Y-%m-%d %H:%M:%S'))
    updated_at = fields.Function(lambda obj: datetime.strftime(obj.updated_at, '%Y-%m-%d %H:%M:%S'))
    # created_at = fields.DateTime()
    # updated_at = fields.DateTime()
    tags = fields.String()
    operator = fields.String()
    name = fields.String()
    area_ids = fields.String()
    grid_code = fields.String()


class GridAirQualitySchema(Schema):
    id = fields.Integer()
    grid_id = fields.Integer()
    # grid = fields.Nested(GridSchema, many=True)
    # 一对一时不用many=True,一对多或者多对多时需要many=True参数
    grid = fields.Nested(GridSchema)
    data = fields.Dict()
    # published_at = fields.DateTime()
    # 自定义时间序列化规则,源数据直接序列化后不符合要求
    published_at = fields.Function(lambda obj: datetime.strftime(obj.published_at, '%Y-%m-%d %H:%M:%S'))

4使用定义的序列化与反序列化器序列化

use.py

from config import session
from model import GridAIrQuality, Grid
from marshmallow import pprint
from form import GridAirQualitySchema

gridHourAQData = session.query(GridAIrQuality).filter(GridAIrQuality.published_at<='2019-05-05', GridAIrQuality.published_at>='2019-05-01').all()
# 生成序列化器对象,并传入many=True参数表示是对多个对象进行序列化(即数组中的所有对象)
schema = GridAirQualitySchema(many=True)
# 调用dump序列化为python格式的数据,若用dumps,则序列化为json格式
data = schema.dump(gridHourAQData)
print(data)

5使用未定义好的外键和关系描述进行联表查询

要联结超过 2 张以上的表,可以直接在 join 得到的结果之后链式调用 join 。也可以在 filter 的结果后面链式调用 join 。join 和 filter 返回的都是 query 对象,因此可以无限链式调用下去。

写完查询后,应该打印生成的 SQL 语句查看一下有没有性能问题。

from config import session

ret=session.query(Person,Favor).filter(Person.favor_id==Favor.nid).all()
ret1=session.query(Person).join(Favor).all()
data=session.query(Account, Bind).join(Bind,Account.gameuid==Bind.fromid).filter(Bind.toid==1000).all()

6查询数据库所有表格及其字段信息

import os
import pandas as pd
from sqlalchemy import create_engine
import psycopg2
import psycopg2.extras
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import session_maker

engine = create_engine("postgresql+psycopg2://glzt:123456@127.0.0.1:5432/spider", max_overflow=5, encoding='utf-8')

Base = declarative_base()
session_maker = sessionmaker(bind=engine)
session = session_maker()
Base.metadata.reflect(engine)
# 查看表结构,(返回一个字典,键为表名,值为字段信息)
tables = Base.metadata.tables
# 获取所有表格,字典为键为表名,值为字段属性组成的
tables = list(tables.keys())
data = pd.read_sql(sql, engine)
sql = f"""select setval('{table}_id_seq', (select max(id) from {table}));"""


dayAQData_o3 = [gridHourAQDataGroupById['o3', 'published_at'].get_group(x) for x in index]
上一篇下一篇

猜你喜欢

热点阅读