内存泄露是怎么回事?
对普通进程来说,能看到的其实是内核提供的虚拟内存,这些虚拟内存还需要通过页表,由系统映射为物理内存。
当进程通过 malloc() 申请虚拟内存后,系统并不会立即为其分配物理内存,而是在首次访问时,才通过缺页异常陷入内核中分配内存。
为了协调 CPU 与磁盘间的性能差异,Linux 还会使用 Cache 和 Buffer ,分别把文件和磁盘读写的数据缓存到内存中。
对应用程序来说,动态内存的分配和回收,是既核心又复杂的一个逻辑功能模块。管理内存的过程中,也很容易发生各种各样的“事故”,比如,
没正确回收分配后的内存,导致了泄漏。
访问的是已分配内存边界外的地址,导致程序异常退出,等等。
用户空间内存包括多个不同的内存段,比如只读段、数据段、堆、栈以及文件映射段等。这些内存段正是应用程序使用内存的基本方式。
举个例子,你在程序中定义了一个局部变量,比如一个整数数组 int data[64] ,就定义了一个可以存储 64 个整数的内存段。由于这是一个局部变量,它会从内存空间的栈中分配内存。
栈内存由系统自动分配和管理。一旦程序运行超出了这个局部变量的作用域,栈内存就会被系统自动回收,所以不会产生内存泄漏的问题。
再比如,很多时候,我们事先并不知道数据大小,所以你就要用到标准库函数 malloc() _,_ 在程序中动态分配内存。这时候,系统就会从内存空间的堆中分配内存。
堆内存由应用程序自己来分配和管理。除非程序退出,这些堆内存并不会被系统自动释放,而是需要应用程序明确调用库函数 free() 来释放它们。如果应用程序没有正确释放堆内存,就会造成内存泄漏。
内存泄漏的危害非常大,这些忘记释放的内存,不仅应用程序自己不能访问,系统也不能把它们再次分配给其他应用。内存泄漏不断累积,甚至会耗尽系统内存。
虽然,系统最终可以通过 OOM (Out of Memory)机制杀死进程,但进程在 OOM 前,可能已经引发了一连串的反应,导致严重的性能问题。
比如,其他需要内存的进程,可能无法分配新的内存;内存不足,又会触发系统的缓存回收以及 SWAP 机制,从而进一步导致 I/O 的性能问题等等。