Android性能优化android基础知识程序员

Android ANR在线监控原理

2017-12-02  本文已影响136人  大大大大大先生

Android中的Watchdog

Watchdog线程死锁监控实现

public final class ActivityManagerService extends ActivityManagerNative
        implements Watchdog.Monitor, BatteryStatsImpl.BatteryCallback {

  public ActivityManagerService(Context systemContext) {
    Watchdog.getInstance().addMonitor(this);
  }

  public void monitor() {
        synchronized (this) { }
    }
// ...
}

如上是从ActivityManagerService提取出来关于Watchdog监控ActivityManagerService这个对象锁的相关代码,而监控的实现如下,Watchdog是一个线程对象,start这个线程之后就会每次wait 30s后检查一次,如此不断的循环检查:

public void addMonitor(Monitor monitor) {
        synchronized (this) {
            if (isAlive()) {
                throw new RuntimeException("Monitors can't be added once the Watchdog is running");
            }
            mMonitorChecker.addMonitor(monitor);
        }
    }

@Override
    public void run() {
        boolean waitedHalf = false;
        while (true) {
            final ArrayList<HandlerChecker> blockedCheckers;
            final String subject;
            final boolean allowRestart;
            int debuggerWasConnected = 0;
            synchronized (this) {
                long timeout = CHECK_INTERVAL;
                // Make sure we (re)spin the checkers that have become idle within
                // this wait-and-check interval
                for (int i=0; i<mHandlerCheckers.size(); i++) {
                    HandlerChecker hc = mHandlerCheckers.get(i);
                    hc.scheduleCheckLocked();
                }

                if (debuggerWasConnected > 0) {
                    debuggerWasConnected--;
                }

                // NOTE: We use uptimeMillis() here because we do not want to increment the time we
                // wait while asleep. If the device is asleep then the thing that we are waiting
                // to timeout on is asleep as well and won't have a chance to run, causing a false
                // positive on when to kill things.
                long start = SystemClock.uptimeMillis();
                while (timeout > 0) {
                    if (Debug.isDebuggerConnected()) {
                        debuggerWasConnected = 2;
                    }
                    try {
                        wait(timeout);
                    } catch (InterruptedException e) {
                        Log.wtf(TAG, e);
                    }
                    if (Debug.isDebuggerConnected()) {
                        debuggerWasConnected = 2;
                    }
                    timeout = CHECK_INTERVAL - (SystemClock.uptimeMillis() - start);
                }

                final int waitState = evaluateCheckerCompletionLocked();
                if (waitState == COMPLETED) {
                    // The monitors have returned; reset
                    waitedHalf = false;
                    continue;
                } else if (waitState == WAITING) {
                    // still waiting but within their configured intervals; back off and recheck
                    continue;
                } else if (waitState == WAITED_HALF) {
                    if (!waitedHalf) {
                        // We've waited half the deadlock-detection interval.  Pull a stack
                        // trace and wait another half.
                        ArrayList<Integer> pids = new ArrayList<Integer>();
                        pids.add(Process.myPid());
                        ActivityManagerService.dumpStackTraces(true, pids, null, null,
                                NATIVE_STACKS_OF_INTEREST);
                        waitedHalf = true;
                    }
                    continue;
                }

                // something is overdue!
                blockedCheckers = getBlockedCheckersLocked();
                subject = describeCheckersLocked(blockedCheckers);
                allowRestart = mAllowRestart;
            }

            // If we got here, that means that the system is most likely hung.
            // First collect stack traces from all threads of the system process.
            // Then kill this process so that the system will restart.
            EventLog.writeEvent(EventLogTags.WATCHDOG, subject);

            ArrayList<Integer> pids = new ArrayList<Integer>();
            pids.add(Process.myPid());
            if (mPhonePid > 0) pids.add(mPhonePid);
            // Pass !waitedHalf so that just in case we somehow wind up here without having
            // dumped the halfway stacks, we properly re-initialize the trace file.
            final File stack = ActivityManagerService.dumpStackTraces(
                    !waitedHalf, pids, null, null, NATIVE_STACKS_OF_INTEREST);

            // Give some extra time to make sure the stack traces get written.
            // The system's been hanging for a minute, another second or two won't hurt much.
            SystemClock.sleep(2000);

            // Pull our own kernel thread stacks as well if we're configured for that
            if (RECORD_KERNEL_THREADS) {
                dumpKernelStackTraces();
            }

            String tracesPath = SystemProperties.get("dalvik.vm.stack-trace-file", null);
            String traceFileNameAmendment = "_SystemServer_WDT" + mTraceDateFormat.format(new Date());

            if (tracesPath != null && tracesPath.length() != 0) {
                File traceRenameFile = new File(tracesPath);
                String newTracesPath;
                int lpos = tracesPath.lastIndexOf (".");
                if (-1 != lpos)
                    newTracesPath = tracesPath.substring (0, lpos) + traceFileNameAmendment + tracesPath.substring (lpos);
                else
                    newTracesPath = tracesPath + traceFileNameAmendment;
                traceRenameFile.renameTo(new File(newTracesPath));
                tracesPath = newTracesPath;
            }

            final File newFd = new File(tracesPath);

            // Try to add the error to the dropbox, but assuming that the ActivityManager
            // itself may be deadlocked.  (which has happened, causing this statement to
            // deadlock and the watchdog as a whole to be ineffective)
            Thread dropboxThread = new Thread("watchdogWriteToDropbox") {
                    public void run() {
                        mActivity.addErrorToDropBox(
                                "watchdog", null, "system_server", null, null,
                                subject, null, newFd, null);
                    }
                };
            dropboxThread.start();
            try {
                dropboxThread.join(2000);  // wait up to 2 seconds for it to return.
            } catch (InterruptedException ignored) {}


            // At times, when user space watchdog traces don't give an indication on
            // which component held a lock, because of which other threads are blocked,
            // (thereby causing Watchdog), crash the device to analyze RAM dumps
            boolean crashOnWatchdog = SystemProperties
                                        .getBoolean("persist.sys.crashOnWatchdog", false);
            if (crashOnWatchdog) {
                // Trigger the kernel to dump all blocked threads, and backtraces
                // on all CPUs to the kernel log
                Slog.e(TAG, "Triggering SysRq for system_server watchdog");
                doSysRq('w');
                doSysRq('l');

                // wait until the above blocked threads be dumped into kernel log
                SystemClock.sleep(3000);

                // now try to crash the target
                doSysRq('c');
            }

            IActivityController controller;
            synchronized (this) {
                controller = mController;
            }
            if (controller != null) {
                Slog.i(TAG, "Reporting stuck state to activity controller");
                try {
                    Binder.setDumpDisabled("Service dumps disabled due to hung system process.");
                    // 1 = keep waiting, -1 = kill system
                    int res = controller.systemNotResponding(subject);
                    if (res >= 0) {
                        Slog.i(TAG, "Activity controller requested to coninue to wait");
                        waitedHalf = false;
                        continue;
                    }
                } catch (RemoteException e) {
                }
            }

            // Only kill the process if the debugger is not attached.
            if (Debug.isDebuggerConnected()) {
                debuggerWasConnected = 2;
            }
            if (debuggerWasConnected >= 2) {
                Slog.w(TAG, "Debugger connected: Watchdog is *not* killing the system process");
            } else if (debuggerWasConnected > 0) {
                Slog.w(TAG, "Debugger was connected: Watchdog is *not* killing the system process");
            } else if (!allowRestart) {
                Slog.w(TAG, "Restart not allowed: Watchdog is *not* killing the system process");
            } else {
                Slog.w(TAG, "*** WATCHDOG KILLING SYSTEM PROCESS: " + subject);
                for (int i=0; i<blockedCheckers.size(); i++) {
                    Slog.w(TAG, blockedCheckers.get(i).getName() + " stack trace:");
                    StackTraceElement[] stackTrace
                            = blockedCheckers.get(i).getThread().getStackTrace();
                    for (StackTraceElement element: stackTrace) {
                        Slog.w(TAG, "    at " + element);
                    }
                }
                Slog.w(TAG, "*** GOODBYE!");
                Process.killProcess(Process.myPid());
                System.exit(10);
            }

            waitedHalf = false;
        }
    }

首先,ActivityManagerService调用addMonitor()方法把自己添加到了Watchdog的mMonitorChecker对象中,这是Watchdog的一个全局变量,这个全部变量在Watchdog的构造方法中已经事先初始化好并添加到mHandlerCheckers:ArrayList<HandlerChecker>这个监控对象列表中了,mMonitorChecker是一个HandlerChecker类的实例对象,代码如下:

public final class HandlerChecker implements Runnable {
        private final Handler mHandler;
        private final String mName;
        private final long mWaitMax;
        private final ArrayList<Monitor> mMonitors = new ArrayList<Monitor>();
        private boolean mCompleted;
        private Monitor mCurrentMonitor;
        private long mStartTime;

        HandlerChecker(Handler handler, String name, long waitMaxMillis) {
            mHandler = handler;
            mName = name;
            mWaitMax = waitMaxMillis;
            mCompleted = true;
        }

        public void addMonitor(Monitor monitor) {
            mMonitors.add(monitor);
        }

        public void scheduleCheckLocked() {
            if (mMonitors.size() == 0 && mHandler.getLooper().getQueue().isPolling()) {
                // If the target looper has recently been polling, then
                // there is no reason to enqueue our checker on it since that
                // is as good as it not being deadlocked.  This avoid having
                // to do a context switch to check the thread.  Note that we
                // only do this if mCheckReboot is false and we have no
                // monitors, since those would need to be executed at this point.
                mCompleted = true;
                return;
            }

            if (!mCompleted) {
                // we already have a check in flight, so no need
                return;
            }

            mCompleted = false;
            mCurrentMonitor = null;
            mStartTime = SystemClock.uptimeMillis();
            mHandler.postAtFrontOfQueue(this);
        }

        public boolean isOverdueLocked() {
            return (!mCompleted) && (SystemClock.uptimeMillis() > mStartTime + mWaitMax);
        }

        public int getCompletionStateLocked() {
            if (mCompleted) {
                return COMPLETED;
            } else {
                long latency = SystemClock.uptimeMillis() - mStartTime;
                if (latency < mWaitMax/2) {
                    return WAITING;
                } else if (latency < mWaitMax) {
                    return WAITED_HALF;
                }
            }
            return OVERDUE;
        }

        public Thread getThread() {
            return mHandler.getLooper().getThread();
        }

        public String getName() {
            return mName;
        }

        public String describeBlockedStateLocked() {
            if (mCurrentMonitor == null) {
                return "Blocked in handler on " + mName + " (" + getThread().getName() + ")";
            } else {
                return "Blocked in monitor " + mCurrentMonitor.getClass().getName()
                        + " on " + mName + " (" + getThread().getName() + ")";
            }
        }

        @Override
        public void run() {
            final int size = mMonitors.size();
            for (int i = 0 ; i < size ; i++) {
                synchronized (Watchdog.this) {
                    mCurrentMonitor = mMonitors.get(i);
                }
                mCurrentMonitor.monitor();
            }

            synchronized (Watchdog.this) {
                mCompleted = true;
                mCurrentMonitor = null;
            }
        }
    }

HandlerChecker类中的mMonitors也是监控对象列表,这里是监控所有实现了Watchdog.Monitor接口的监控对象,而那些没有实现Watchdog.Monitor接口的对象则会单独创建一个HandlerChecker类并add到Watchdog的mHandlerCheckers监控列表中,当Watchdog线程开始健康那个的时候就回去遍历mHandlerCheckers列表,并逐一的调用HandlerChecker的scheduleCheckLocked方法:

public void scheduleCheckLocked() {
            if (mMonitors.size() == 0 && mHandler.getLooper().getQueue().isPolling()) {
                // If the target looper has recently been polling, then
                // there is no reason to enqueue our checker on it since that
                // is as good as it not being deadlocked.  This avoid having
                // to do a context switch to check the thread.  Note that we
                // only do this if mCheckReboot is false and we have no
                // monitors, since those would need to be executed at this point.
                mCompleted = true;
                return;
            }

            if (!mCompleted) {
                // we already have a check in flight, so no need
                return;
            }

            mCompleted = false;
            mCurrentMonitor = null;
            mStartTime = SystemClock.uptimeMillis();
            mHandler.postAtFrontOfQueue(this);
        }

HandlerChecker这个类中有几个比较重要的标志,一个是mCompleted,标识着本次监控扫描是否在指定时间内完成,mStartTime标识本次开始扫描的时间mHandler,则是被监控的线程的handler,scheduleCheckLocked是开启本次对与改线程的监控,里面理所当然的会把mCompleted置为false并设置开始时间,可以看到,监控原理就是向被监控的线程的Handler的消息队列中post一个任务,也就是HandlerChecker本身,然后HandlerChecker这个任务就会在被监控的线程对应Handler维护的消息队列中被执行,如果消息队列因为某一个任务卡住,那么HandlerChecker这个任务就无法及时的执行到,超过了指定的时间后就会被认为当前被监控的这个线程发生了卡死(死锁造成的卡死或者执行耗时任务造成的卡死),在HandlerChecker这个任务中:

@Override
        public void run() {
            final int size = mMonitors.size();
            for (int i = 0 ; i < size ; i++) {
                synchronized (Watchdog.this) {
                    mCurrentMonitor = mMonitors.get(i);
                }
                mCurrentMonitor.monitor();
            }

            synchronized (Watchdog.this) {
                mCompleted = true;
                mCurrentMonitor = null;
            }
        }

首先遍历mMonitors列表中的监控对象并调用monitor()方法来开启监控,通常在被监控对象实现的monitor()方法都是按照如下实现的:

public void monitor() {
        synchronized (this) { }
    }

即监控某一个死锁,然后就是本次监控完成,mCompleted设置为true,而当所有的scheduleCheckLocked都执行完了之后,Watchdog就开始wait,而且一定要wait for 30s,这里有一个实现细节:

long start = SystemClock.uptimeMillis();
                while (timeout > 0) {
                    if (Debug.isDebuggerConnected()) {
                        debuggerWasConnected = 2;
                    }
                    try {
                        wait(timeout);
                    } catch (InterruptedException e) {
                        Log.wtf(TAG, e);
                    }
                    if (Debug.isDebuggerConnected()) {
                        debuggerWasConnected = 2;
                    }
                    timeout = CHECK_INTERVAL - (SystemClock.uptimeMillis() - start);
                }

原先,我看到这段代码的时候,首先关注到SystemClock.uptimeMillis()在设备休眠的时候是不计时的,因此猜测会不会是因为设备休眠了,wait也停止了,Watchdog在wait到15s的时候设备休眠了,并且连续休眠30分钟后才又被唤醒,那么这时候wait会不会马上被唤醒,答案是:正常情况下wait会继续,知道直到剩下的15s也wait完成后才会唤醒,所以我疑惑了,于是查看下下Thread的wait()方法的接口文档,终于找到如下解释:

A thread can also wake up without being notified, interrupted, or
     * timing out, a so-called <i>spurious wakeup</i>.  While this will rarely
     * occur in practice, applications must guard against it by testing for
     * the condition that should have caused the thread to be awakened, and
     * continuing to wait if the condition is not satisfied.  In other words,
     * waits should always occur in loops, like this one:
     * <pre>
     *     synchronized (obj) {
     *         while (&lt;condition does not hold&gt;)
     *             obj.wait(timeout);
     *         ... // Perform action appropriate to condition
     *     }
     * </pre>

大致意思是说当Thread在wait的时候除了会被主动唤醒(notify或者notifyAll),中断(interrupt),或者wait的时间到期而唤醒,还有可能被假唤醒,而这种假唤醒在实践中发生的几率非常低,不过针对这种假唤醒,程序需要通过验证唤醒条件来区分线程是真的唤醒还是假的唤醒,如果是假的唤醒那么就继续wait直到真唤醒,事实上,在我们实际的开发过程中确实要注意这种微小的细节,可能99%的情况下不会发生,但是要是遇到1%的情况发生之后,那么这个问题将会是非常隐晦的,而且在查找问题的时候也会变得很困难,很奇怪,为什么线程好好的wait过程中突然被唤醒了呢,甚至可能怀疑我们以前对于线程wait在设备休眠状态下的执行情况?,废话就扯到这里,继续来研究Watchdog机制,在Watchdog等待30s之后会调用evaluateCheckerCompletionLocked()方法来检测被监控对象的运行情况:

private int evaluateCheckerCompletionLocked() {
        int state = COMPLETED;
        for (int i=0; i<mHandlerCheckers.size(); i++) {
            HandlerChecker hc = mHandlerCheckers.get(i);
            state = Math.max(state, hc.getCompletionStateLocked());
        }
        return state;
    }

通过调用HandlerChecker的getCompletionStateLocked来获取每一个HandlerChecker的监控状态:

public int getCompletionStateLocked() {
            if (mCompleted) {
                return COMPLETED;
            } else {
                long latency = SystemClock.uptimeMillis() - mStartTime;
                if (latency < mWaitMax/2) {
                    return WAITING;
                } else if (latency < mWaitMax) {
                    return WAITED_HALF;
                }
            }
            return OVERDUE;
        }

从这里,我们就看到了其实是通过mCompleted这个标志来区分30s之前和30s之后的不通状态,因为30s之前对被监控的线程对应的Handler的消息对了中post了一个HandlerChecker任务,然后mCompleted = false,等待了30s后,如果HandlerChecker被及时的执行了,那么mCompleted = true表示任务及时执行完毕,而如果发现mCompleted = false那就说明HandlerChecker依然未被执行,当mCompleted = false的时候,会继续检测HandlerChecker任务的执行时间,如果在唤醒状态下的执行时间小于30秒,那重新post监控等待,如果在30秒到60秒之间,那就会dump出一些堆栈信息,然后重新post监控等待,当等待时间已经超过60秒了,那就认为这是异常情况了(要么死锁,要么耗时任务太久),这时候就会搜集各种相关信息,例如代码堆栈信息,kernel信息,cpu信息等,生成trace文件,保存相关信息到dropbox文件夹下,然后杀死该进程,到这里监控就结束了

Watchdog线程卡顿监控实现

之前我们提到Watchdog监控的实现是通过post一个HandlerChecker到线程对应的Handler对的消息对了中的,而死锁的监控对象都是保存在HandlerChecker的mMonitors列表中的,所以外部调用addMonitor()方法,最终都会add到Watchdog的全局变量mMonitorChecker中的监控列表,一次所有线程的死锁监控都由mMonitorChecker来负责实现,那么对于线程耗时任务的监控,Watchdog是通过addThread()方法来实现的:

public void addThread(Handler thread) {
        addThread(thread, DEFAULT_TIMEOUT);
    }

    public void addThread(Handler thread, long timeoutMillis) {
        synchronized (this) {
            if (isAlive()) {
                throw new RuntimeException("Threads can't be added once the Watchdog is running");
            }
            final String name = thread.getLooper().getThread().getName();
            mHandlerCheckers.add(new HandlerChecker(thread, name, timeoutMillis));
        }
    }

addThread()方法实际上是创建了一个新的HandlerChecker对象,通过该对象来实现耗时任务的监控,而该HandlerChecker对象的mMonitors列表实际上是空的,因此在执行任务的时候并不会执行monitor()方法了,而是直接设置mCompleted标志位,所以可以这么解释:Watchdog监控者是HandlerChecker,而HandlerChecker实现了线程死锁监控和耗时任务监控,当有Monitor对象的时候就会同时监控线程死锁和耗时任务,而没有Monitor的时候就只是监控线程的耗时任务造成的卡顿

Watchdog监控流程

watchdog.jpg

WatchDog机制的anr在线监控实现与demo

https://github.com/liuhongda/anrmonitor/tree/master/anrmonitor

Watchdog机制总结

上一篇 下一篇

猜你喜欢

热点阅读