Tensorflow Mac 安装教程
2018-04-25 本文已影响77人
杂货铺学徒
macOS:10.13.4
Tensorflow安装教程在官网或者中文社区也有。也可以参照Tensorflow的GitHub。
过程比较简单,还是简单说下我安装的过程
1.python环境
Mac自带,注意下python版本,我的电脑是2.7.5
2.安装pip
pip的版本需要在8.0以上,若是之前安装过pip,版本低于8.0,则需要先卸载pip重新安装
卸载pip命令:
$ sudo pip uninstall pip
安装pip命令:
$ sudo easy_install pip
$ pip --version
我原来是1.5.6,现在为10.0.1
若pip版本低,会报刺眼的红色警告!!!
类似:
Could not find any downloads that satisfy the requirement tensorflow
3.安装VirtualEnv
我们推荐使用 VirtualEnv 创建一个隔离的容器, 来安装 TensorFlow. 这是可选的, 但是这样做能使排查安装问题变得更容易.
首先, 安装所有必备工具:
$ sudo easy_install pip # 如果还没有安装 pip
$ sudo pip install --upgrade virtualenv
接下来, 建立一个全新的 virtualenv 环境. 为了将环境建在 ~/tensorflow
目录下, 执行:
$ virtualenv --system-site-packages ~/tensorflow
$ cd ~/tensorflow
然后, 激活 virtualenv:
$ source bin/activate # 如果使用 bash
$ source bin/activate.csh # 如果使用 csh
(tensorflow)$ # 终端提示符应该发生变化
4.安装Tensorflow
在 virtualenv 内, 安装 TensorFlow:
python版本
对应不同python版本有不同安装包(下面tensorflow版本为1.0.0,现在截止目前最新的是1.8.0rc0版本):
# Mac OS X, CPU only, Python 2.7:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.0-py2-none-any.whl
# Mac OS X, GPU enabled, Python 2.7:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow_gpu-1.0.0-py2-none-any.whl
# Mac OS X, CPU only, Python 3.4 or 3.5:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.0-py3-none-any.whl
# Mac OS X, GPU enabled, Python 3.4 or 3.5:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow_gpu-1.0.0-py3-none-any.whl
(tensorflow)$ pip install --upgrade $TF_BINARY_URL
这里有可能会遇到黄色警告,可以不理会依然安装成功。
当使用完 TensorFlow
(tensorflow)$ deactivate # 停用 virtualenv
$ # 你的命令提示符会恢复原样
5.尝试你的第一个 TensorFlow 程序
在~/tensorflow
下新建hello.py文件
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf
hello = tf.constant("hello,tensorflow");
sess = tf.Session()
print sess.run(hello)
a = tf.constant(10)
b = tf.constant(32)
print sess.run(a+b)
matrix1 = tf.constant([[3.,3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1,matrix2)
result = sess.run(product)
print result
sess.close()
然后执行
$ python hello.py
正常情况下会显示
(tensorflow) bogon:tensorflow huadong$ python hello.py
hello,tensorflow
42
[[12.]]
(tensorflow) bogon:tensorflow huadong$
若出现下面的警告:
2018-04-25 09:43:46.898056: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-25 09:43:46.898104: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-04-25 09:43:46.898120: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-25 09:43:46.898133: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
解决方法参考这里
在python文件中增加
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
上面文件已经添加