机器学习

Tensorflow Mac 安装教程

2018-04-25  本文已影响77人  杂货铺学徒

macOS:10.13.4

Tensorflow安装教程在官网或者中文社区也有。也可以参照Tensorflow的GitHub

过程比较简单,还是简单说下我安装的过程

1.python环境

Mac自带,注意下python版本,我的电脑是2.7.5

2.安装pip

pip的版本需要在8.0以上,若是之前安装过pip,版本低于8.0,则需要先卸载pip重新安装

卸载pip命令:

$ sudo pip uninstall pip

安装pip命令:

$ sudo easy_install pip
$ pip --version

我原来是1.5.6,现在为10.0.1

若pip版本低,会报刺眼的红色警告!!!
类似:

  Could not find any downloads that satisfy the requirement tensorflow

3.安装VirtualEnv

我们推荐使用 VirtualEnv 创建一个隔离的容器, 来安装 TensorFlow. 这是可选的, 但是这样做能使排查安装问题变得更容易.

首先, 安装所有必备工具:

$ sudo easy_install pip  # 如果还没有安装 pip
$ sudo pip install --upgrade virtualenv

接下来, 建立一个全新的 virtualenv 环境. 为了将环境建在 ~/tensorflow 目录下, 执行:

$ virtualenv --system-site-packages ~/tensorflow
$ cd ~/tensorflow

然后, 激活 virtualenv:

$ source bin/activate  # 如果使用 bash
$ source bin/activate.csh  # 如果使用 csh
(tensorflow)$  # 终端提示符应该发生变化

4.安装Tensorflow

在 virtualenv 内, 安装 TensorFlow:

python版本

对应不同python版本有不同安装包(下面tensorflow版本为1.0.0,现在截止目前最新的是1.8.0rc0版本):

# Mac OS X, CPU only, Python 2.7:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.0-py2-none-any.whl
 
# Mac OS X, GPU enabled, Python 2.7:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow_gpu-1.0.0-py2-none-any.whl

# Mac OS X, CPU only, Python 3.4 or 3.5:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.0-py3-none-any.whl
 
# Mac OS X, GPU enabled, Python 3.4 or 3.5:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow_gpu-1.0.0-py3-none-any.whl
(tensorflow)$ pip install --upgrade $TF_BINARY_URL

这里有可能会遇到黄色警告,可以不理会依然安装成功。

当使用完 TensorFlow

(tensorflow)$ deactivate  # 停用 virtualenv

$  # 你的命令提示符会恢复原样

5.尝试你的第一个 TensorFlow 程序

~/tensorflow下新建hello.py文件

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

import tensorflow as tf

hello = tf.constant("hello,tensorflow");
sess = tf.Session()
print sess.run(hello)

a = tf.constant(10)
b = tf.constant(32)
print sess.run(a+b)

matrix1 = tf.constant([[3.,3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1,matrix2)
result = sess.run(product)
print result

sess.close()

然后执行

$ python hello.py 

正常情况下会显示

(tensorflow) bogon:tensorflow huadong$ python hello.py 
hello,tensorflow
42
[[12.]]
(tensorflow) bogon:tensorflow huadong$ 

若出现下面的警告:

2018-04-25 09:43:46.898056: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-25 09:43:46.898104: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-04-25 09:43:46.898120: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-25 09:43:46.898133: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.

解决方法参考这里
在python文件中增加

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

上面文件已经添加

上一篇下一篇

猜你喜欢

热点阅读