py3笔记19:typing类型注解
常见数据类型:str,int,Tuple,List,Dict
在声明变量类型时,变量后方紧跟一个冒号,冒号后面跟一个空格,再跟上变量的类型。
在声明方法返回值的时候,箭头左边是方法定义,箭头右边是返回值的类型,箭头左右两边都要留有空格。
def get_sum(i: int) -> str:
return str(i)
- 利用
mypy
即可检查出Python
脚本中不符合类型注解的调用情况 - 推荐使用
attrs
这个库来声明一些具有表征意义的类。
typing模块
标准库
借助于 typing
模块了,它提供了非常 “强 “的类型支持,
如 List[str]
、Tuple[int, int, int]
则可以表示由 str
类型的元素组成的列表和由 int
类型的元素组成的长度为 3 的元组
from typing import List, Tuple, Dict
names: List[str] = ["1", 2] # Expected type 'list[str]', got 'list[int]' instead=>第1个元素str则正常
ages: Tuple[str, int] = (1, "3") # Expected type 'tuple[str, int]', got 'tuple[int, str]' instead
student: Dict[int, str] = {12: [12], "123": 12} # Expected type 'dict[int, str]', got 'dict[str, list[int]]' instead
# Expected type 'dict[int, str]', got 'dict[Union[int, str], Union[list[int], int]]' instead
classs = List[str or int] = [["ba"], [1]]
Tuple
Dict、字典,是 dict 的泛型;
Mapping
,映射,是 collections.abc.Mapping
的泛型。
根据官方文档,Dict
推荐用于注解返回类型,Mapping
推荐用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,中括号内分别声明键名、键值的类型
set
Set、集合,是 set 的泛型;AbstractSet、是 collections.abc.Set 的泛型。根据官方文档,Set 推荐用于注解返回类型,AbstractSet 用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,里面声明集合中元素的类型
NoReturn
NoReturn,当一个方法没有返回结果时,为了注解它的返回类型,我们可以将其注解为 NoReturn
Any
Any,是一种特殊的类型,它可以代表所有类型,静态类型检查器的所有类型都与 Any 类型兼容,所有的无参数类型注解和返回类型注解的都会默认使用 Any 类型
原理类似于 object,所有的类型都是 object 的子类。但如果我们将参数声明为 object 类型,静态参数类型检查便会抛出错误,而 Any 则不会,具体可以参考官方文档的说明:https://docs.python.org/zh-cn/3/library/typing.html?highlight=typing#the-any-type。
TypeVar
TypeVar,我们可以借助它来自定义兼容特定类型的变量,比如有的变量声明为 int、float、None 都是符合要求的,实际就是代表任意的数字或者空内容都可以,其他的类型则不可以,比如列表 list、字典 dict 等等,我们可以使用 TypeVar 来表示。 例如一个人的身高,便可以使用 int 或 float 或 None 来表示,但不能用 dict 来表示,所以可以这么声明:
height = 1.75
Height = TypeVar('Height', int, float, None)
def get_height() -> Height:
return height
这里我们使用 TypeVar 声明了一个 Height 类型,然后将其用于注解方法的返回结果。
NewType
NewType,我们可以借助于它来声明一些具有特殊含义的类型,例如像 Tuple 的例子一样,我们需要将它表示为 Person,即一个人的含义,但但从表面上声明为 Tuple 并不直观,所以我们可以使用 NewType 为其声明一个类型,如:
Person = NewType('Person', Tuple[str, int, float])
person = Person(('Mike', 22, 1.75))
这里实际上 person 就是一个 tuple 类型,我们可以对其像 tuple 一样正常操作。
Callable
Callable,可调用类型,它通常用来注解一个方法,比如我们刚才声明了一个 add 方法,它就是一个 Callable 类型:
print(Callable, type(add), isinstance(add, Callable))
运行结果:
True
在这里虽然二者 add 利用 type 方法得到的结果是 function,但实际上利用 isinstance 方法判断确实是 True。 Callable 在声明的时候需要使用 Callable[[Arg1Type, Arg2Type, ...], ReturnType]
这样的类型注解,将参数类型和返回值类型都要注解出来,例如:
def date(year: int, month: int, day: int) -> str:
return f'{year}-{month}-{day}'
def get_date_fn() -> Callable[[int, int, int], str]:
return date
这里首先声明了一个方法 date,接收三个 int 参数,返回一个 str 结果,get_date_fn 方法返回了这个方法本身,它的返回值类型就可以标记为 Callable,中括号内分别标记了返回的方法的参数类型和返回值类型。
Union
Union,联合类型,Union[X, Y]
代表要么是 X 类型,要么是 Y 类型。 联合类型的联合类型等价于展平后的类型:
Union[Union[int, str], float] == Union[int, str, float]
仅有一个参数的联合类型会坍缩成参数自身,比如:
Union[int] == int
多余的参数会被跳过,比如:
Union[int, str, int] == Union[int, str]
在比较联合类型的时候,参数顺序会被忽略,比如:
Union[int, str] == Union[str, int]
这个在一些方法参数声明的时候比较有用,比如一个方法,要么传一个字符串表示的方法名,要么直接把方法传过来:
def process(fn: Union[str, Callable]):
if isinstance(fn, str):
# str2fn and process
pass
elif isinstance(fn, Callable):
fn()
这样的声明在一些类库方法定义的时候十分常见。
Optional
Optional,意思是说这个参数可以为空或已经声明的类型,即 Optional[X]
等价于 Union[X, None]
。 但值得注意的是,这个并不等价于可选参数,当它作为参数类型注解的时候,不代表这个参数可以不传递了,而是说这个参数可以传为 None。 如当一个方法执行结果,如果执行完毕就不返回错误信息, 如果发生问题就返回错误信息,则可以这么声明:
def judge(result: bool) -> Optional[str]:
if result: return 'Error Occurred'
Generator
如果想代表一个生成器类型,可以使用 Generator,它的声明比较特殊,其后的中括号紧跟着三个参数,分别代表 YieldType、SendType、ReturnType,如:
def echo_round() -> Generator[int, float, str]:
sent = yield 0
while sent >= 0:
sent = yield round(sent)
return 'Done'
在这里 yield 关键字后面紧跟的变量的类型就是 YieldType,yield 返回的结果的类型就是 SendType,最后生成器 return 的内容就是 ReturnType。 当然很多情况下,生成器往往只需要 yield 内容就够了,我们是不需要 SendType 和 ReturnType 的,可以将其设置为空,如:
def infinite_stream(start: int) -> Generator[int, None, None]:
while True:
yield start
start += 1
案例实战
接下来让我们看一个实际的项目,看看经常用到的类型一般是怎么使用的。 这里我们看的库是 requests-html,是由 Kenneth Reitz 所开发的,其 GitHub 地址为:https://github.com/psf/requests-html,下面我们主要看看它的源代码中一些类型是如何声明的。 这个库的源代码其实就一个文件,那就是 https://github.com/psf/requests-html/blob/master/requests_html.py,我们看一下它里面的一些 typing 的定义和方法定义。 首先 Typing 的定义部分如下:
from typing import Set, Union, List, MutableMapping, Optional
_Find = Union[List['Element'], 'Element']
_XPath = Union[List[str], List['Element'], str, 'Element']
_Result = Union[List['Result'], 'Result']
_HTML = Union[str, bytes]
_BaseHTML = str
_UserAgent = str
_DefaultEncoding = str
_URL = str
_RawHTML = bytes
_Encoding = str
_LXML = HtmlElement
_Text = str
_Search = Result
_Containing = Union[str, List[str]]
_Links = Set[str]
_Attrs = MutableMapping
_Next = Union['HTML', List[str]]
_NextSymbol = List[str]
这里可以看到主要用到的类型有 Set
、Union
、List
、MutableMapping
、Optional
,这些在上文都已经做了解释,另外这里使用了多次 Union 来声明了一些新的类型,如 _Find
则要么是是 Element 对象的列表,要么是单个 Element 对象,_Result
则要么是 Result 对象的列表,要么是单个 Result 对象。另外 _Attrs
其实就是字典类型,这里用 MutableMapping 来表示了,没有用 Dict,也没有用 Mapping。
接下来再看一个 Element 类的声明:
class Element(BaseParser):
"""An element of HTML.
:param element: The element from which to base the parsing upon.
:param url: The URL from which the HTML originated, used for ``absolute_links``.
:param default_encoding: Which encoding to default to.
"""
__slots__ = [
'element', 'url', 'skip_anchors', 'default_encoding', '_encoding',
'_html', '_lxml', '_pq', '_attrs', 'session'
]
def __init__(self, *, element, url: _URL, default_encoding: _DefaultEncoding = None) -> None:
super(Element, self).__init__(element=element, url=url, default_encoding=default_encoding)
self.element = element
self.tag = element.tag
self.lineno = element.sourceline
self._attrs = None
def __repr__(self) -> str:
attrs = ['{}={}'.format(attr, repr(self.attrs[attr])) for attr in self.attrs]
return "<Element {} {}>".format(repr(self.element.tag), ' '.join(attrs))
@property
def attrs(self) -> _Attrs:
"""Returns a dictionary of the attributes of the :class:`Element <Element>`
(`learn more <https://www.w3schools.com/tags/ref_attributes.asp>`_).
"""
if self._attrs is None:
self._attrs = {k: v for k, v in self.element.items()}
# Split class and rel up, as there are ussually many of them:
for attr in ['class', 'rel']:
if attr in self._attrs:
self._attrs[attr] = tuple(self._attrs[attr].split())
return self._attrs
这里 __init__
方法接收非常多的参数,同时使用 _URL
、_DefaultEncoding
进行了参数类型注解,另外 attrs 方法使用了 _Attrs
进行了返回结果类型注解。 整体看下来,每个参数的类型、返回值都进行了清晰地注解,代码可读性大大提高。 以上便是类型注解和 typing 模块的详细介绍。