python

py3笔记19:typing类型注解

2022-07-22  本文已影响0人  _百草_

常见数据类型:str,int,Tuple,List,Dict

在声明变量类型时,变量后方紧跟一个冒号,冒号后面跟一个空格,再跟上变量的类型。
在声明方法返回值的时候,箭头左边是方法定义,箭头右边是返回值的类型,箭头左右两边都要留有空格。

def get_sum(i: int) -> str:
    return str(i)

typing模块

标准库
借助于 typing 模块了,它提供了非常 “强 “的类型支持,
List[str]Tuple[int, int, int]则可以表示由 str 类型的元素组成的列表和由 int 类型的元素组成的长度为 3 的元组

from typing import List, Tuple, Dict

names: List[str] = ["1", 2]  # Expected type 'list[str]', got 'list[int]' instead=>第1个元素str则正常
ages: Tuple[str, int] = (1, "3")  # Expected type 'tuple[str, int]', got 'tuple[int, str]' instead
student: Dict[int, str] = {12: [12], "123": 12}  # Expected type 'dict[int, str]', got 'dict[str, list[int]]' instead
# Expected type 'dict[int, str]', got 'dict[Union[int, str], Union[list[int], int]]' instead

classs = List[str or int] = [["ba"], [1]]

Tuple

Dict、字典,是 dict 的泛型;

Mapping,映射,是 collections.abc.Mapping 的泛型。
根据官方文档,Dict 推荐用于注解返回类型,Mapping 推荐用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,中括号内分别声明键名、键值的类型

set

Set、集合,是 set 的泛型;AbstractSet、是 collections.abc.Set 的泛型。根据官方文档,Set 推荐用于注解返回类型,AbstractSet 用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,里面声明集合中元素的类型

NoReturn

NoReturn,当一个方法没有返回结果时,为了注解它的返回类型,我们可以将其注解为 NoReturn

Any

Any,是一种特殊的类型,它可以代表所有类型,静态类型检查器的所有类型都与 Any 类型兼容,所有的无参数类型注解和返回类型注解的都会默认使用 Any 类型

原理类似于 object,所有的类型都是 object 的子类。但如果我们将参数声明为 object 类型,静态参数类型检查便会抛出错误,而 Any 则不会,具体可以参考官方文档的说明:https://docs.python.org/zh-cn/3/library/typing.html?highlight=typing#the-any-type

TypeVar

TypeVar,我们可以借助它来自定义兼容特定类型的变量,比如有的变量声明为 int、float、None 都是符合要求的,实际就是代表任意的数字或者空内容都可以,其他的类型则不可以,比如列表 list、字典 dict 等等,我们可以使用 TypeVar 来表示。 例如一个人的身高,便可以使用 int 或 float 或 None 来表示,但不能用 dict 来表示,所以可以这么声明:

height = 1.75
Height = TypeVar('Height', int, float, None)
def get_height() -> Height:
 return height

这里我们使用 TypeVar 声明了一个 Height 类型,然后将其用于注解方法的返回结果。

NewType

NewType,我们可以借助于它来声明一些具有特殊含义的类型,例如像 Tuple 的例子一样,我们需要将它表示为 Person,即一个人的含义,但但从表面上声明为 Tuple 并不直观,所以我们可以使用 NewType 为其声明一个类型,如:

Person = NewType('Person', Tuple[str, int, float])
person = Person(('Mike', 22, 1.75))

这里实际上 person 就是一个 tuple 类型,我们可以对其像 tuple 一样正常操作。

Callable

Callable,可调用类型,它通常用来注解一个方法,比如我们刚才声明了一个 add 方法,它就是一个 Callable 类型:

print(Callable, type(add), isinstance(add, Callable))

运行结果:
True

在这里虽然二者 add 利用 type 方法得到的结果是 function,但实际上利用 isinstance 方法判断确实是 True。 Callable 在声明的时候需要使用 Callable[[Arg1Type, Arg2Type, ...], ReturnType] 这样的类型注解,将参数类型和返回值类型都要注解出来,例如:

def date(year: int, month: int, day: int) -> str:
 return f'{year}-{month}-{day}'

def get_date_fn() -> Callable[[int, int, int], str]:
 return date

这里首先声明了一个方法 date,接收三个 int 参数,返回一个 str 结果,get_date_fn 方法返回了这个方法本身,它的返回值类型就可以标记为 Callable,中括号内分别标记了返回的方法的参数类型和返回值类型。

Union

Union,联合类型,Union[X, Y] 代表要么是 X 类型,要么是 Y 类型。 联合类型的联合类型等价于展平后的类型:

Union[Union[int, str], float] == Union[int, str, float]

仅有一个参数的联合类型会坍缩成参数自身,比如:

Union[int] == int

多余的参数会被跳过,比如:
Union[int, str, int] == Union[int, str]
在比较联合类型的时候,参数顺序会被忽略,比如:
Union[int, str] == Union[str, int]

这个在一些方法参数声明的时候比较有用,比如一个方法,要么传一个字符串表示的方法名,要么直接把方法传过来:

def process(fn: Union[str, Callable]):
 if isinstance(fn, str):
 # str2fn and process
 pass
 elif isinstance(fn, Callable):
 fn()

这样的声明在一些类库方法定义的时候十分常见。

Optional

Optional,意思是说这个参数可以为空或已经声明的类型,即 Optional[X] 等价于 Union[X, None]。 但值得注意的是,这个并不等价于可选参数,当它作为参数类型注解的时候,不代表这个参数可以不传递了,而是说这个参数可以传为 None。 如当一个方法执行结果,如果执行完毕就不返回错误信息, 如果发生问题就返回错误信息,则可以这么声明:

def judge(result: bool) -> Optional[str]:
 if result: return 'Error Occurred'

Generator

如果想代表一个生成器类型,可以使用 Generator,它的声明比较特殊,其后的中括号紧跟着三个参数,分别代表 YieldType、SendType、ReturnType,如:

def echo_round() -> Generator[int, float, str]:
 sent = yield 0
 while sent >= 0:
 sent = yield round(sent)
 return 'Done'

在这里 yield 关键字后面紧跟的变量的类型就是 YieldType,yield 返回的结果的类型就是 SendType,最后生成器 return 的内容就是 ReturnType。 当然很多情况下,生成器往往只需要 yield 内容就够了,我们是不需要 SendType 和 ReturnType 的,可以将其设置为空,如:

def infinite_stream(start: int) -> Generator[int, None, None]:
 while True:
 yield start
 start += 1

案例实战

接下来让我们看一个实际的项目,看看经常用到的类型一般是怎么使用的。 这里我们看的库是 requests-html,是由 Kenneth Reitz 所开发的,其 GitHub 地址为:https://github.com/psf/requests-html,下面我们主要看看它的源代码中一些类型是如何声明的。 这个库的源代码其实就一个文件,那就是 https://github.com/psf/requests-html/blob/master/requests_html.py,我们看一下它里面的一些 typing 的定义和方法定义。 首先 Typing 的定义部分如下:

from typing import Set, Union, List, MutableMapping, Optional

_Find = Union[List['Element'], 'Element']
_XPath = Union[List[str], List['Element'], str, 'Element']
_Result = Union[List['Result'], 'Result']
_HTML = Union[str, bytes]
_BaseHTML = str
_UserAgent = str
_DefaultEncoding = str
_URL = str
_RawHTML = bytes
_Encoding = str
_LXML = HtmlElement
_Text = str
_Search = Result
_Containing = Union[str, List[str]]
_Links = Set[str]
_Attrs = MutableMapping
_Next = Union['HTML', List[str]]
_NextSymbol = List[str]

这里可以看到主要用到的类型有 SetUnionListMutableMappingOptional,这些在上文都已经做了解释,另外这里使用了多次 Union 来声明了一些新的类型,如 _Find 则要么是是 Element 对象的列表,要么是单个 Element 对象,_Result 则要么是 Result 对象的列表,要么是单个 Result 对象。另外 _Attrs 其实就是字典类型,这里用 MutableMapping 来表示了,没有用 Dict,也没有用 Mapping。
接下来再看一个 Element 类的声明:

class Element(BaseParser):
 """An element of HTML.
 :param element: The element from which to base the parsing upon.
 :param url: The URL from which the HTML originated, used for ``absolute_links``.
 :param default_encoding: Which encoding to default to.
 """

 __slots__ = [
 'element', 'url', 'skip_anchors', 'default_encoding', '_encoding',
 '_html', '_lxml', '_pq', '_attrs', 'session'
 ]

 def __init__(self, *, element, url: _URL, default_encoding: _DefaultEncoding = None) -> None:
 super(Element, self).__init__(element=element, url=url, default_encoding=default_encoding)
 self.element = element
 self.tag = element.tag
 self.lineno = element.sourceline
 self._attrs = None

 def __repr__(self) -> str:
 attrs = ['{}={}'.format(attr, repr(self.attrs[attr])) for attr in self.attrs]
 return "<Element {} {}>".format(repr(self.element.tag), ' '.join(attrs))

 @property
 def attrs(self) -> _Attrs:
 """Returns a dictionary of the attributes of the :class:`Element <Element>`
 (`learn more <https://www.w3schools.com/tags/ref_attributes.asp>`_).
 """
 if self._attrs is None:
 self._attrs = {k: v for k, v in self.element.items()}

 # Split class and rel up, as there are ussually many of them:
 for attr in ['class', 'rel']:
 if attr in self._attrs:
 self._attrs[attr] = tuple(self._attrs[attr].split())

 return self._attrs

这里 __init__ 方法接收非常多的参数,同时使用 _URL_DefaultEncoding 进行了参数类型注解,另外 attrs 方法使用了 _Attrs 进行了返回结果类型注解。 整体看下来,每个参数的类型、返回值都进行了清晰地注解,代码可读性大大提高。 以上便是类型注解和 typing 模块的详细介绍。

搬运工

Python 中 typing 模块和类型注解的使用

上一篇下一篇

猜你喜欢

热点阅读