Hill-Climbing Searching Algorith
2017-10-23 本文已影响0人
DarkKnightRedoc
8Puzzles Problem
#include<vector>
#include<iostream>
#include<utility>
#include<algorithm>
#define random(x) (rand()%x)
#define MaxSteps 100
int cost;
bool InRandomRestart = false;
using namespace std;
struct _8Puzzles {
vector<vector<int>> State; // current state
pair<int, int> BlankPos; // position of the blank.
int ManhattanDis;
vector<int> SuccessorsManhattan; // [0] - Manhattan after move up(if possible)
// [1] - Manhattan after move down(if possible)
// [2] - Manhattan after move left(if possible)
// [3] - Manhattan after move right(if possible)
_8Puzzles() {
ManhattanDis = 0;
State.resize(3);
for (int i = 0; i < 3; i++)
State[i].resize(3);
BlankPos = make_pair(0, 0);
SuccessorsManhattan.resize(4);
}
int Manhattan() { // Calculate and set Manhattan Distance
int sum = 0;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (State[i][j] == 0) continue;
int row = State[i][j] / 3;
int col = State[i][j] % 3;
int distance = abs(row - i) + abs(col - j);
sum += distance;
}
}
ManhattanDis = sum;
return sum;
}
void SetSuccessorsManhattan() {
if (CanMoveUp()) {
_8Puzzles Up = *this;
Up.MoveUp();
SuccessorsManhattan[0] = Up.Manhattan();
}
else SuccessorsManhattan[0] = 10000;
if (CanMoveDown()) {
_8Puzzles Down = *this;
Down.MoveDown();
SuccessorsManhattan[1] = Down.Manhattan();
}
else SuccessorsManhattan[1] = 10000;
if (CanMoveLeft()) {
_8Puzzles Left = *this;
Left .MoveLeft();
SuccessorsManhattan[2] = Left.Manhattan();
}
else SuccessorsManhattan[2] = 10000;
if (CanMoveRight()) {
_8Puzzles Right = *this;
Right.MoveRight();
SuccessorsManhattan[3] = Right.Manhattan();
}
else SuccessorsManhattan[3] = 10000;
}
bool CanMoveUp() {
int row = BlankPos.first, col = BlankPos.second;
if (row == 0) // on the first row, unable to move up
return false;
return true;
}
bool CanMoveDown() {
int row = BlankPos.first, col = BlankPos.second;
if (row == 2) // on the first row, unable to move up
return false;
return true;
}
bool CanMoveLeft() {
int row = BlankPos.first, col = BlankPos.second;
if (col == 0) // on the first row, unable to move up
return false;
return true;
}
bool CanMoveRight() {
int row = BlankPos.first, col = BlankPos.second;
if (col == 2) // on the first row, unable to move up
return false;
return true;
}
bool MoveUp() {
int row = BlankPos.first, col = BlankPos.second;
if (!CanMoveUp()) // on the first row, unable to move up
return false;
else {
int temp = State[row - 1][col]; // the value that's on top of the blank
State[row - 1][col] = 0; // blank moves up
State[row][col] = temp; // value moves down
BlankPos = make_pair(row - 1, col); // blank position updates
return true;
}
}
bool MoveDown() {
int row = BlankPos.first, col = BlankPos.second;
if (!CanMoveDown()) // on the first row, unable to move up
return false;
else {
int temp = State[row + 1][col]; // the value that's on below of the blank
State[row + 1][col] = 0; // blank moves below
State[row][col] = temp; // value moves down
BlankPos = make_pair(row + 1, col); // blank position updates
return true;
}
}
bool MoveLeft() {
int row = BlankPos.first, col = BlankPos.second;
if (!CanMoveLeft()) // on the first row, unable to move up
return false;
else {
int temp = State[row][col-1]; // the value that's on left of the blank
State[row][col-1] = 0; // blank moves left
State[row][col] = temp; // value moves right
BlankPos = make_pair(row, col-1); // blank position updates
return true;
}
}
bool MoveRight() {
int row = BlankPos.first, col = BlankPos.second;
if (!CanMoveRight()) // on the first row, unable to move up
return false;
else {
int temp = State[row][col + 1]; // the value that's on right of the blank
State[row][col + 1] = 0; // blank moves right
State[row][col] = temp; // value moves left
BlankPos = make_pair(row, col + 1); // blank position updates
return true;
}
}
};
_8Puzzles Generator() {
_8Puzzles ResultPuzzle;
// init is the result state of 8Puzzles
vector<vector<int>> init;
init.resize(3);
for (int i = 0; i < 3; i++)
init[i].resize(3);
for (int i = 0; i < 3; ++i) { // 初始状态为目标状态
for (int j = 0; j < 3; ++j) {
init[i][j] = i * 3 + j;
}
}
ResultPuzzle.State = init;
ResultPuzzle.BlankPos = make_pair(0, 0);
int MoveTimes = 1000;
while (MoveTimes--) { // randomly moves 1000 times
int Select = random(4);
if (Select == 0)
ResultPuzzle.MoveUp();
else if (Select == 1)
ResultPuzzle.MoveDown();
else if (Select == 2)
ResultPuzzle.MoveLeft();
else if (Select == 3)
ResultPuzzle.MoveRight();
}
ResultPuzzle.Manhattan();
ResultPuzzle.SetSuccessorsManhattan();
return ResultPuzzle;
}
bool SteepestAscent(_8Puzzles _8P) {
_8Puzzles CopyPuzzle = _8P;
int MinManhatton = 9999, MinManIndex;
int chance = MaxSteps;
chance = InRandomRestart ? cost + MaxSteps : MaxSteps;
while (cost < chance) {
MinManhatton = 9999;
MinManIndex = -1;
cost += 1;
for (int i = 0; i < 4; i++) {
if (CopyPuzzle.SuccessorsManhattan[i] < MinManhatton && CopyPuzzle.SuccessorsManhattan[i] < CopyPuzzle.ManhattanDis) {
MinManhatton = CopyPuzzle.SuccessorsManhattan[i];
MinManIndex = i;
}
}
if (MinManIndex == -1) { // Can't find a smaller successor, reach Shoulder, no solution
if (!InRandomRestart)
cout << "Shoulder reaching ";
return false;
}
if (MinManIndex == 0)
CopyPuzzle.MoveUp();
else if (MinManIndex == 1)
CopyPuzzle.MoveDown();
else if (MinManIndex == 2)
CopyPuzzle.MoveLeft();
else if (MinManIndex == 3)
CopyPuzzle.MoveRight();
CopyPuzzle.SetSuccessorsManhattan();
CopyPuzzle.Manhattan();
if (CopyPuzzle.ManhattanDis == 0) {
return true;
}
}
if (!InRandomRestart)
cout << "Max steps exceeded ";
return false;
}
bool FirstChoice(_8Puzzles _8P) {
_8Puzzles CopyPuzzle = _8P;
int MinManhatton = 9999, MinManIndex;
while (cost < MaxSteps) {
MinManhatton = 9999;
MinManIndex = -1;
cost += 1;
for (int i = 0; i < 4; i++) {
if (CopyPuzzle.SuccessorsManhattan[i] < MinManhatton && CopyPuzzle.SuccessorsManhattan[i] < CopyPuzzle.ManhattanDis) {
MinManhatton = CopyPuzzle.SuccessorsManhattan[i];
MinManIndex = i;
}
}
if (MinManIndex == -1) { // Can't find a smaller successor, reach Shoulder, no solution
if (!InRandomRestart)
cout << "Shoulder reaching";
return false;
}
if (MinManIndex == 0)
CopyPuzzle.MoveUp();
else if (MinManIndex == 1)
CopyPuzzle.MoveDown();
else if (MinManIndex == 2)
CopyPuzzle.MoveLeft();
else if (MinManIndex == 3)
CopyPuzzle.MoveRight();
CopyPuzzle.SetSuccessorsManhattan();
CopyPuzzle.Manhattan();
if (CopyPuzzle.ManhattanDis == 0)
return true;
}
if (!InRandomRestart)
cout << "Max steps exceeded ";
return false;
}
bool SimulatedAnnealing(_8Puzzles _8P) {
double temperature = 5;
_8Puzzles CopyPuzzle = _8P;
while (temperature > 0.00001) {
cost += 1;
bool better = false;
int ran; // randomly choose a successor
do {
ran = random(4);
} while (CopyPuzzle.SuccessorsManhattan[ran] == 10000); // make sure the successor is a valid one
int nextState = CopyPuzzle.SuccessorsManhattan[ran];
int curState = CopyPuzzle.ManhattanDis;
// randomly decide whether use this position or not
int E = nextState - curState;
if (E < 0) {
better = true;
}
else if (exp((-1)*E / temperature) >((double)(rand() % 1000) / 1000)) {
better = true;
}
if (better) {
if (ran == 0)
CopyPuzzle.MoveUp();
else if (ran == 1)
CopyPuzzle.MoveDown();
else if (ran == 2)
CopyPuzzle.MoveLeft();
else if (ran == 3)
CopyPuzzle.MoveRight();
CopyPuzzle.SetSuccessorsManhattan();
CopyPuzzle.Manhattan();
if (CopyPuzzle.ManhattanDis == 0) // not a result state, keep on climbing
return true;
}
temperature *= 0.999;
}
return false;
}
bool RandomRestart(_8Puzzles _8P) {
InRandomRestart = true;
cost = 0;
bool Found = SteepestAscent(Generator());
while (!Found) {
_8P = Generator();
Found = SteepestAscent(_8P);
}
InRandomRestart = false;
return true;
}
int main() {
int TempTimes, TestTimes,SuccessCount,TotalCost;
TempTimes = TestTimes = 1000;
SuccessCount = 0;
TotalCost = 0;
while (TestTimes--) {
cost = 0;
cout << "Trail No." << TempTimes - TestTimes << ": ";
if (SteepestAscent(Generator())) {
cout << "Success! cost = " << cost << endl;
SuccessCount++;
TotalCost += cost;
}
else {
cout << "Failure!" << endl;
}
}
cout << "SteepestAscent statistics : " << endl;
cout << "Success Rate = " << SuccessCount << "/1000" << endl;
cout << "Average Cost = " << TotalCost / SuccessCount << endl << endl;
TempTimes = TestTimes = 1000;
SuccessCount = 0;
TotalCost = 0;
while (TestTimes--) {
cost = 0;
cout << "Trail No." << TempTimes - TestTimes << ": ";
if (SimulatedAnnealing(Generator())) {
cout << "Success! cost = " << cost << endl;
SuccessCount++;
TotalCost += cost;
}
else {
cout << "Failure!" << endl;
}
}
cout << "SimulatedAnnealing statistics : " << endl;
cout << "Success Rate = " << SuccessCount << "/1000" << endl;
cout << "Average Cost = " << TotalCost / SuccessCount << endl << endl;
TempTimes = TestTimes = 100;
SuccessCount = 0;
TotalCost = 0;
while (TestTimes--) {
cout << "Trail No." << TempTimes - TestTimes << ": ";
RandomRestart(Generator());
cout << "Success! cost = " << cost << endl;
SuccessCount++;
TotalCost += cost;
}
cout << "Random Restart statistics : " << endl;
cout << "Success Rate = " << SuccessCount << "/100" << endl;
cout << "Average Cost = " << TotalCost / SuccessCount << endl << endl;
return 0;
}
8Queens Problem
#include<iostream>
#include<vector>
#include<cstdlib>
#include<utility>
#define random(x) (rand()%x)
#define MaxStepsForClimbing 100
int cost = 0;
using namespace std;
int CalculateConflicts(vector<vector<int>> ChessBoard);
// A state of the 8-Queens problem
// Chess board representation of this state
// Number of conflicts of this state
// Number of conflicts there will be if a queen is moved to another row and the same column
struct _8Queen {
vector < vector<int>> ChessBoard;
int Conflicts;
vector<vector<int>> ConflictsBoard;
_8Queen() {
ChessBoard.resize(8);
for (int i = 0; i < 8; i++)
ChessBoard[i].resize(8);
ConflictsBoard.resize(8);
for (int i = 0; i < 8; i++)
ConflictsBoard[i].resize(8);
Conflicts = 0;
}
// look for the least conflicts in the succeesors, so as to move to that state
pair<int, int> FindLeastConflicts() {
pair<int, int> ResultPosition;
int Least = 29; // most conflicts in a 8queens state is 28;
for (int row = 0; row < 8; row++) {
for (int col = 0; col < 8; col++) {
if (ConflictsBoard[row][col] < Least) {
Least = ConflictsBoard[row][col];
ResultPosition = make_pair(row, col);
}
}
}
return ResultPosition;
}
void ConfilctBoardConstruction() { // construct ConflictBorad
// find a queen, move it to all rows of the same col to form 7 other states
// for each state, calculate number of conflict, and set the values in ConflictsBoard
for (int row = 0; row < 8; row++) {
for (int col = 0; col < 8; col++) {
if (ChessBoard[row][col] == 1) { // a queen is found
ConflictsBoard[row][col] = Conflicts;
vector<vector<int>> NewState = ChessBoard; // copy the chessboard of this state
NewState[row][col] = 0; // remove the queen and move her
for (int OtherRow = 0; OtherRow < 8; OtherRow++) { // move the queen to the other rows of the same column
if (OtherRow != row) { // not the same row
NewState[OtherRow][col] = 1; // place the queen
ConflictsBoard[OtherRow][col] = CalculateConflicts(NewState); // calculate the conflict of this state, and set it in ConflictsBoard
}
NewState[OtherRow][col] = 0; // remove the queen after calculation and ready to move her to another row
}
}
}
}
}
bool CheckSuccess() { // wheather or not it has found a result
return CalculateConflicts(ChessBoard) == 0;
}
};
// randomly generates an 8-Queens problem where queens are placed in different column
_8Queen _8QueensGeneration() {
_8Queen Result;
for (int i = 0; i < 8; i++) { // place an queen in a random row from col 0 to 7
int ran = random(8);
Result.ChessBoard[ran][i] = 1;
}
Result.Conflicts = CalculateConflicts(Result.ChessBoard); // calculate and set the conflicts of the problem
Result.ConfilctBoardConstruction();
return Result;
}
int CalculateConflicts(vector<vector<int>> ChessBoard) {
int Result = 0; // Calculated number of conflicts
for (int row = 0; row < 8; row++) {
for (int col = 0; col < 8; col++) {
if (ChessBoard[row][col] == 1) {
for (int i = col + 1; i < 8; i++) { // Sum of queens on the right
if (ChessBoard[row][i] == 1)
Result++;
}
for (int i = row + 1; i < 8; i++) { // Sum of queens on below
if (ChessBoard[i][col] == 1)
Result++;
}
int temprow = row, tempcol = col;
while (temprow + 1 < 8 && tempcol + 1 < 8) {
temprow += 1;
tempcol += 1;
if (ChessBoard[temprow][tempcol] == 1)
Result++;
}
temprow = row, tempcol = col;
while (temprow + 1 < 8 && tempcol - 1 >= 0) {
temprow += 1;
tempcol -= 1;
if (ChessBoard[temprow][tempcol] == 1)
Result++;
}
}
}
}
return Result;
}
bool InRandomRestart = false;
bool restart = false;
// select a position, whose state's conflict is the least of all
// move the queen that's in that column, to the selected row.
bool HillClimbing(_8Queen _8Q) {
pair<int, int> LeastPosition; // row and column of the least-conflict position;
_8Queen QueenMove = _8Q; // the succesor state, the best neighbor
restart = false;
int chance = MaxStepsForClimbing;
chance = InRandomRestart ? cost + MaxStepsForClimbing : MaxStepsForClimbing;
while (cost < chance) {
cost += 1;
LeastPosition = QueenMove.FindLeastConflicts();
for (int row = 0; row < 8; row++) // find and remove the queen
if (QueenMove.ChessBoard[row][LeastPosition.second] == 1)
QueenMove.ChessBoard[row][LeastPosition.second] = 0;
QueenMove.ChessBoard[LeastPosition.first][LeastPosition.second] = 1; // place the queen in the least confilcts position
QueenMove.Conflicts = CalculateConflicts(QueenMove.ChessBoard); // calculate new conflicts for the new state
QueenMove.ConfilctBoardConstruction(); // construct the new conflict board for the new state
if (QueenMove.CheckSuccess() == true) // not a result state, keep on climbing
return true;
}
return false;
}
// randomly select a position, whose state's conflict would be smaller than the current one
// move the queen that's in that column, to the selected row.
int FirstChoice(_8Queen _8Q) {
pair<int, int> BetterPosition; // row and column of a randomly selected better-conflict position;
_8Queen QueenMove = _8Q; // the succesor state, the best neighbor
int RandomRow, RandomCol;
while (cost < MaxStepsForClimbing) {
cost += 1;
int generateCount = 0;
bool betterFound = true;
do { // keep generating new random value until the condition is fufiled.
RandomRow = random(8);
RandomCol = random(8);
generateCount++;
if (generateCount > 100) {
betterFound = false;
break;
}
} while (QueenMove.ConflictsBoard[RandomRow][RandomCol] >= QueenMove.Conflicts);
if (betterFound == false)
continue;
BetterPosition = make_pair(RandomRow, RandomCol);
for (int row = 0; row < 8; row++) // find and remove the queen
if (QueenMove.ChessBoard[row][BetterPosition.second] == 1) {
QueenMove.ChessBoard[row][BetterPosition.second] = 0;
break;
}
QueenMove.ChessBoard[BetterPosition.first][BetterPosition.second] = 1; // place the queen in the least confilcts position
QueenMove.Conflicts = CalculateConflicts(QueenMove.ChessBoard); // calculate new conflicts for the new state
QueenMove.ConfilctBoardConstruction(); // construct the new conflict board for the new state
if (QueenMove.CheckSuccess() == true) // not a result state, keep on climbing
break;
}
return cost;
}
bool RandomRestart(_8Queen _8Q) {
InRandomRestart = true;
cost = 0;
bool Found = HillClimbing(_8Q);
while (!Found) { // if
_8Q = _8QueensGeneration();
Found = HillClimbing(_8Q);
}
InRandomRestart = false;
return true;
}
bool SimulatedAnnealing(_8Queen _8Q) {
double temperature = 5;
_8Queen QueenMove = _8Q;
while (temperature > 0.00001) {
cost += 1;
int RandomRow = random(8);
int RandomCol = random(8); // randomly pick a position
bool better = false;
int nextState = QueenMove.ConflictsBoard[RandomRow][RandomCol];
int curState = QueenMove.Conflicts;
// randomly decide whether use this position or not
int E = nextState - curState;
if (E < 0) {
better = true;
}
else if (exp((-1)*E / temperature) >((double)(rand() % 1000) / 1000)) {
better = true;
}
if (better) {
for (int row = 0; row < 8; row++) // find and remove the queen
if (QueenMove.ChessBoard[row][RandomCol] == 1) {
QueenMove.ChessBoard[row][RandomCol] = 0;
break;
}
QueenMove.ChessBoard[RandomRow][RandomCol] = 1; // place the queen in the least confilcts position
QueenMove.Conflicts = CalculateConflicts(QueenMove.ChessBoard); // calculate new conflicts for the new state
QueenMove.ConfilctBoardConstruction(); // construct the new conflict board for the new state
if (QueenMove.CheckSuccess() == true) // not a result state, keep on climbing
return true;
temperature *= 0.99;
}
}
return false;
}
int main() {
int times = 1000;
int SuccessCount = 0;
int TotalCost = 0;
// hillclimbing (steepest-ascent)
/*while (times--) {
cost = 0;
cout << "Trail No." << 1000 - times << ": ";
HillClimbing(_8QueensGeneration());
if (cost >= MaxStepsForClimbing)
cout << "Searched Failed." << endl;
else {
cout << "Success! cost = " << cost << endl;
SuccessCount++;
TotalCost += cost;
}
}
cout << "HillClimbing(Steepest-Ascent) statistics : " << endl;
cout << "Success Rate = " << SuccessCount << "/1000" << endl;
cout << "Average Cost = " << TotalCost / SuccessCount << endl << endl;
times = 1000;
SuccessCount = 0;
TotalCost = 0;
while (times--) {
cost = 0;
cout << "Trail No." << 1000 - times << ": ";
cost = FirstChoice(_8QueensGeneration());
if (cost >= MaxStepsForClimbing)
cout << "Searched Failed." << endl;
else {
cout << "Success! cost = " << cost << endl;
SuccessCount++;
TotalCost += cost;
}
}
cout << "HillClimbing(First Choice) statistics : " << endl;
cout << "Success Rate = " << SuccessCount << "/1000" << endl;
cout << "Average Cost = " << TotalCost / SuccessCount << endl << endl;*/
times = 100;
SuccessCount = 0;
TotalCost = 0;
while (times--) {
cout << "Trail No." << 100 - times << ": ";
RandomRestart(_8QueensGeneration());
cout << "Success! cost = " << cost << endl;
SuccessCount++;
TotalCost += cost;
}
cout << "HillClimbing(Random Restart) statistics : " << endl;
cout << "Success Rate = " << SuccessCount << "/100" << endl;
cout << "Average Cost = " << TotalCost / SuccessCount << endl << endl;
times = 100;
SuccessCount = 0;
TotalCost = 0;
while (times--) {
cost = 0;
cout << "Trail No." << 100 - times << ": ";
if (SimulatedAnnealing(_8QueensGeneration())) {
cout << "Success! cost = " << cost << endl;
SuccessCount++;
TotalCost += cost;
}
else
cout << "Searched Failed." << endl;
}
cout << "HillClimbing(Simulated Annealing) statistics : " << endl;
cout << "Success Rate = " << SuccessCount << "/100" << endl;
cout << "Average Cost = " << TotalCost / SuccessCount << endl << endl;
return 0;
}