我爱编程

win10上配置mxnet、keras、tensorflow、c

2017-05-06  本文已影响0人  yfmei

必要条件

安装步骤

测试theano

import theano.tensor as T

import numpy

import time

vlen = 10 * 30 * 768  # 10 x #cores x # threads per core

iters = 1000

rng = numpy.random.RandomState(22)

x = shared(numpy.asarray(rng.rand(vlen), config.floatX))

f = function([], T.exp(x))

print (f.maker.fgraph.toposort())

t0 = time.time()

for i in range(iters):

    r = f()

t1 = time.time()

print ('Looping %d times took' % iters, t1 - t0, 'seconds')

print ('Result is', r)

if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):

    print ('Used the cpu')

else:

    print ('Used the gpu')

测试BLAS

import numpy
id(numpy.dot) == id(numpy.core.multiarray.dot)

结果为False表示已经成功依赖了BLAS加速,如果是Ture则表示用的是python自己的实现,并没有加速。

附上.theanorc.txt内容

[global]

openmp = False
#这样theano无法使用gpu加速,要改成gpu,虽然会出现警告,但是theano可以用gpu加速
device = cuda

floatX = float32 
#init_gpu_device = gpu #用device = cuda就不能用

optimizer_including = cudnn #不用cudnn的话就不要这句  

optimizer = fast_compile 

allow_input_downcast = True

exception_verbosity = high

[blas]

ldflags = 

[dnn]
include_path = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\include
library_path = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\lib\x64

[lib]
# 不能超过1
cnmem = 0.8

[gcc]
# mingw目录,mingw安装完记得放到anaconda中
cxxflags =  -IC:\Users\PC\Anaconda2\envs\Anaconda3\MinGW
#好像没什么用
#cxxflags = -D_hypot=hypot -IC:\Users\PC\Anaconda2\envs\Anaconda3\Lib\site-packages\pygpu -LC:\Users\PC\Anaconda2\envs\Anaconda3\Lib\site-packages\pygpu

[nvcc] 
# anaconda3 有两个flags会报错,anaconda2 要有两个 anaconda目录下的libs
flags = -LC:\Users\PC\Anaconda2\env\Anaconda3\libs  

compiler_bindir = C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin

fastmath = True 

#flags =-arch=sm_30 


上一篇 下一篇

猜你喜欢

热点阅读