kafka之Producer端消息发送过程(一)
一、前言
有一段时间,工作的主要内容是做业务安全监控。整个流程包含数据采集、清洗、聚合、存储、指定策略、报警透达等步骤,其中会用到Kafka这样的消息中间件、确实很好用。自己在闲暇的时间找了很多技术博客学习,收获很多。但是很多技术博客存在不一致的地方,对自己造成很大困惑,自己一直没有梳理清楚,后来渐渐的意识到,很多不一致的说法是由于Kafka版本不一致的原因造成的。例如:
(1) Kafka-0.8.2之后producer端不再区分同步(sync)和异步方式(async)。所有的请求以异步方式发送。
(2) Kafka-0.8.* 之前介绍 producer -> broker 没有实现exactly once,只能保证at least once or at most once; 而在0.11.* 之后的版本中producer -> broker 通过幂等性实现了exactly once。
如果仅仅想使用Kafka应付日常工作,了解基本的原理就可以了。但是如果想进一步学习,仅仅看别人的技术博客,往往会有一种浮于表面的感觉,Kafak其中的技术实现细节还需自己通过阅读源码学习。首先指明本文及后续的文章,都是基于Kafka-0.11.2版本书写的,以免造成不必要的困惑,kafka源码大致可以分成三个部分:producer端、server端、和consumer端,其producer端和consumer端是由java实现,server端是由Scala来实现的。Client端是用户最常接触的部分,打算先从producer端开始,producer端主要分析如下的几个问题:
- producer消息发送的过程。
- producer如何更新metadata。
- producer如何保证单个partition的有序性。
- producer如何创建topic。(topic的创建在server完成)
- producer如何保证幂等性。
今天分析第一个为问题:producer端消息发送的过程。
二、Producer消息发送过程
kafka对底层做了很好的封装,并且对用户提供了非常简单易用的api,我们在利用Producer端发送消息的过程中,往往仅需要指明简单的配置参数,调用KafkaProducer的send方法即可。下面是Kafak文档中给出的一个简单的使用demo。
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "all");
props.put("key.serializer","org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 100; i++)
producer.send(new ProducerRecord<String, String>("my-topic",Integer.toString(i), Integer.toString(i)));
producer.close();
2.1 KafakProducer的send方法的实现
下面一步步的分析send方法的实现过程:
/**
* producer端异步的方式向kafka发送消息。
*/
public Future<RecordMetadata> send(ProducerRecord<K, V> record) {
return send(record, null);
}
public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {
//捕获record,这个方法不会抛出异常
ProducerRecord<K, V> interceptedRecord = this.interceptors.onSend(record);
return doSend(interceptedRecord, callback);
}
2.2 KafakProducer的doSend方法的实现
private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) {
TopicPartition tp = null;
try {
throwIfProducerClosed();
// first make sure the metadata for the topic is available
ClusterAndWaitTime clusterAndWaitTime;
try {
clusterAndWaitTime = waitOnMetadata(record.topic(), record.partition(), maxBlockTimeMs);
} catch (KafkaException e) {
if (metadata.isClosed())
throw new KafkaException("Producer closed while send in progress", e);
throw e;
}
long remainingWaitMs = Math.max(0, maxBlockTimeMs - clusterAndWaitTime.waitedOnMetadataMs);
Cluster cluster = clusterAndWaitTime.cluster;
byte[] serializedKey;
try {
serializedKey = keySerializer.serialize(record.topic(), record.headers(), record.key());
} catch (ClassCastException cce) {
throw new SerializationException("Can't convert key of class " + record.key().getClass().getName() +
" to class " + producerConfig.getClass(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG).getName() +
" specified in key.serializer", cce);
}
byte[] serializedValue;
try {
serializedValue = valueSerializer.serialize(record.topic(), record.headers(), record.value());
} catch (ClassCastException cce) {
throw new SerializationException("Can't convert value of class " + record.value().getClass().getName() +
" to class " + producerConfig.getClass(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG).getName() +
" specified in value.serializer", cce);
}
int partition = partition(record, serializedKey, serializedValue, cluster);
tp = new TopicPartition(record.topic(), partition);
setReadOnly(record.headers());
Header[] headers = record.headers().toArray();
int serializedSize = AbstractRecords.estimateSizeInBytesUpperBound(apiVersions.maxUsableProduceMagic(),
compressionType, serializedKey, serializedValue, headers);
ensureValidRecordSize(serializedSize);
long timestamp = record.timestamp() == null ? time.milliseconds() : record.timestamp();
log.trace("Sending record {} with callback {} to topic {} partition {}", record, callback, record.topic(), partition);
// producer callback will make sure to call both 'callback' and interceptor callback
Callback interceptCallback = new InterceptorCallback<>(callback, this.interceptors, tp);
if (transactionManager != null && transactionManager.isTransactional())
transactionManager.maybeAddPartitionToTransaction(tp);
RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey,
serializedValue, headers, interceptCallback, remainingWaitMs);
if (result.batchIsFull || result.newBatchCreated) {
log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition);
this.sender.wakeup();
}
return result.future;
// handling exceptions and record the errors;
// for API exceptions return them in the future,
// for other exceptions throw directly
} catch (ApiException e) {
log.debug("Exception occurred during message send:", e);
if (callback != null)
callback.onCompletion(null, e);
this.errors.record();
this.interceptors.onSendError(record, tp, e);
return new FutureFailure(e);
} catch (InterruptedException e) {
this.errors.record();
this.interceptors.onSendError(record, tp, e);
throw new InterruptException(e);
} catch (BufferExhaustedException e) {
this.errors.record();
this.metrics.sensor("buffer-exhausted-records").record();
this.interceptors.onSendError(record, tp, e);
throw e;
} catch (KafkaException e) {
this.errors.record();
this.interceptors.onSendError(record, tp, e);
throw e;
} catch (Exception e) {
// we notify interceptor about all exceptions, since onSend is called before anything else in this method
this.interceptors.onSendError(record, tp, e);
throw e;
}
}
Producer端的消息发送逻辑主要在doSend方法中,主要的逻辑如下,为了简单理解,我们假设没有开启Kafka的事务性,关于事务性,后面打算再详细介绍。
(1) 判断producer实例是否关闭,一旦关闭,抛出异常。
(2) 判断要发送的topic对应的matadata是可用的,如果不可用,则需要发送请求更新metadata数据。
关于如何更新metadata,会另写一片文章,详细介绍。
(3) 序列化要发送消息的key、value信息。
Kafka内部提供了许多序列化和返序列的相关算法。Producer端对record的key和value值进行序列化操作,在Consumer端再进行相应的反序列化。各种各种算法的具体实现在package org.apache.kafka.common.serialization路径下;
[站外图片上传中...(image-871ebb-1561876501754)]
(4) 判定record信息发送到topic下的哪个partition。
private int partition(ProducerRecord<K, V> record, byte[] serializedKey, byte[] serializedValue, Cluster cluster) {
Integer partition = record.partition();
return partition != null ?
partition :
partitioner.partition(
record.topic(), record.key(), serializedKey, record.value(), serializedValue, cluster);
}
// 如果没有自定义的partitioner,默认使用kafka提供的DefaultPartioner。
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
int numPartitions = partitions.size();
if (keyBytes == null) {
int nextValue = nextValue(topic);
List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
if (availablePartitions.size() > 0) {
int part = Utils.toPositive(nextValue) % availablePartitions.size();
return availablePartitions.get(part).partition();
} else {
// no partitions are available, give a non-available partition
return Utils.toPositive(nextValue) % numPartitions;
}
} else {
// hash the keyBytes to choose a partition
return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
}
}
如果指明要发送的partition,直接发送;若没有指明topic对用的partition和Partitioner的情况下,默认使用kafka提供的 org.apache.kafka.clients.producer.internals.DefaultPartitioner。当然也可以定义自己的Partitioner。当key存在的时候,对key值hash取模确定partition;当key不存在的时候,采用round-rabin算法。具体算法详情见链接:https://www.iteblog.com/archives/2209.html。
(5)向topic对应的队列中追加数据
Producer端发送的消息record并没有直接发送给kafka,而是进入到一个Buffer。RecordAccumulator充当一个队列,收集要发送到server的record消息,然后batch发送。RecordAccumulator模型如下图所示,其中很重要的一个属性,ConcurrentMap<TopicPartition, Deque<RecordBatch>> batches,每个TopicPartition都会对应一个Deque<RecordBatch>,当添加数据时,会向其topic-partition对应的这个queue最新创建的一个RecordBatch中添加record,而发送数据时,则会先从queue中最老的那个RecordBatch开始发送。
[站外图片上传中...(image-b318fb-1561876501754)]
public RecordAppendResult append(TopicPartition tp,
long timestamp,
byte[] key,
byte[] value,
Header[] headers,
Callback callback,
long maxTimeToBlock) throws InterruptedException {
// We keep track of the number of appending thread to make sure we do not miss batches in
// abortIncompleteBatches().
appendsInProgress.incrementAndGet();
ByteBuffer buffer = null;
if (headers == null) headers = Record.EMPTY_HEADERS;
try {
// check if we have an in-progress batch
Deque<ProducerBatch> dq = getOrCreateDeque(tp);
synchronized (dq) {
if (closed)
throw new KafkaException("Producer closed while send in progress");
RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);
if (appendResult != null)
return appendResult;
}
// we don't have an in-progress record batch try to allocate a new batch
byte maxUsableMagic = apiVersions.maxUsableProduceMagic();
int size = Math.max(this.batchSize, AbstractRecords.estimateSizeInBytesUpperBound(maxUsableMagic, compression, key, value, headers));
log.trace("Allocating a new {} byte message buffer for topic {} partition {}", size, tp.topic(), tp.partition());
buffer = free.allocate(size, maxTimeToBlock);
synchronized (dq) {
// Need to check if producer is closed again after grabbing the dequeue lock.
if (closed)
throw new KafkaException("Producer closed while send in progress");
RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);
if (appendResult != null) {
// Somebody else found us a batch, return the one we waited for! Hopefully this doesn't happen often...
return appendResult;
}
MemoryRecordsBuilder recordsBuilder = recordsBuilder(buffer, maxUsableMagic);
ProducerBatch batch = new ProducerBatch(tp, recordsBuilder, time.milliseconds());
FutureRecordMetadata future = Utils.notNull(batch.tryAppend(timestamp, key, value, headers, callback, time.milliseconds()));
dq.addLast(batch);
incomplete.add(batch);
// Don't deallocate this buffer in the finally block as it's being used in the record batch
buffer = null;
return new RecordAppendResult(future, dq.size() > 1 || batch.isFull(), true);
}
} finally {
if (buffer != null)
free.deallocate(buffer);
appendsInProgress.decrementAndGet();
}
}
向发送队列添加record的消息主要逻辑如下:
(1)、getOrCreateDeque方法获取topicPartition对应的消息队列,如果对应的队列不存在,创建一个新的消息队列。
(2)、tryAppend方法尝试将消息添加到消息队列中最后的ProducerBatch对象中,如果不存在直接返回null;如果存在,尝试向ProducerBatch添加数据,如果空间不足,返回null,不然成功添加。
(3)、代码中存在两段重复的代码,个人对官方注解理解:第一次对dq释放锁后,其他线程可能拿到dq的锁,在次期间,对应的dq成功创建了一个ProducerBatch对象。
(4)、如果两次锁后都没发现对应的deque存在的ProducerBatch对象,新创建ProducerBatch实例,将消息添加到其中,并追加到对tp的队列中去。
2.3 唤醒Sender线程,发送消息
如果对应topicPartition的消息队列最新的ProducerBtach的is full或者有新的batch创建,就唤醒Sender线程,发送消息数据。这部分的内容,可能需要了解Java NIO的相关的知识。
void run(long now) {
if (transactionManager != null) {
try {
if (transactionManager.shouldResetProducerStateAfterResolvingSequences())
// Check if the previous run expired batches which requires a reset of the producer state.
transactionManager.resetProducerId();
if (!transactionManager.isTransactional()) {
// this is an idempotent producer, so make sure we have a producer id
maybeWaitForProducerId();
} else if (transactionManager.hasUnresolvedSequences() && !transactionManager.hasFatalError()) {
transactionManager.transitionToFatalError(
new KafkaException("The client hasn't received acknowledgment for " +
"some previously sent messages and can no longer retry them. It isn't safe to continue."));
} else if (transactionManager.hasInFlightTransactionalRequest() || maybeSendTransactionalRequest(now)) {
// as long as there are outstanding transactional requests, we simply wait for them to return
client.poll(retryBackoffMs, now);
return;
}
// do not continue sending if the transaction manager is in a failed state or if there
// is no producer id (for the idempotent case).
if (transactionManager.hasFatalError() || !transactionManager.hasProducerId()) {
RuntimeException lastError = transactionManager.lastError();
if (lastError != null)
maybeAbortBatches(lastError);
client.poll(retryBackoffMs, now);
return;
} else if (transactionManager.hasAbortableError()) {
accumulator.abortUndrainedBatches(transactionManager.lastError());
}
} catch (AuthenticationException e) {
// This is already logged as error, but propagated here to perform any clean ups.
log.trace("Authentication exception while processing transactional request: {}", e);
transactionManager.authenticationFailed(e);
}
}
long pollTimeout = sendProducerData(now);
client.poll(pollTimeout, now);
}
为了方便理解,我们假设不开启Kafka的事务属性,所以主要的逻辑在sendProducerData方法中:
private long sendProducerData(long now) {
Cluster cluster = metadata.fetch();
// get the list of partitions with data ready to send
RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);
// if there are any partitions whose leaders are not known yet, force metadata update
if (!result.unknownLeaderTopics.isEmpty()) {
// The set of topics with unknown leader contains topics with leader election pending as well as
// topics which may have expired. Add the topic again to metadata to ensure it is included
// and request metadata update, since there are messages to send to the topic.
for (String topic : result.unknownLeaderTopics)
this.metadata.add(topic);
log.debug("Requesting metadata update due to unknown leader topics from the batched records: {}",
result.unknownLeaderTopics);
this.metadata.requestUpdate();
}
// remove any nodes we aren't ready to send to
Iterator<Node> iter = result.readyNodes.iterator();
long notReadyTimeout = Long.MAX_VALUE;
while (iter.hasNext()) {
Node node = iter.next();
if (!this.client.ready(node, now)) {
iter.remove();
notReadyTimeout = Math.min(notReadyTimeout, this.client.pollDelayMs(node, now));
}
}
// create produce requests
Map<Integer, List<ProducerBatch>> batches = this.accumulator.drain(cluster, result.readyNodes, this.maxRequestSize, now);
addToInflightBatches(batches);
if (guaranteeMessageOrder) {
// Mute all the partitions drained
for (List<ProducerBatch> batchList : batches.values()) {
for (ProducerBatch batch : batchList)
this.accumulator.mutePartition(batch.topicPartition);
}
}
accumulator.resetNextBatchExpiryTime();
List<ProducerBatch> expiredInflightBatches = getExpiredInflightBatches(now);
List<ProducerBatch> expiredBatches = this.accumulator.expiredBatches(now);
expiredBatches.addAll(expiredInflightBatches);
// Reset the producer id if an expired batch has previously been sent to the broker. Also update the metrics
// for expired batches. see the documentation of @TransactionState.resetProducerId to understand why
// we need to reset the producer id here.
if (!expiredBatches.isEmpty())
log.trace("Expired {} batches in accumulator", expiredBatches.size());
for (ProducerBatch expiredBatch : expiredBatches) {
String errorMessage = "Expiring " + expiredBatch.recordCount + " record(s) for " + expiredBatch.topicPartition
+ ":" + (now - expiredBatch.createdMs) + " ms has passed since batch creation";
failBatch(expiredBatch, -1, NO_TIMESTAMP, new TimeoutException(errorMessage), false);
if (transactionManager != null && expiredBatch.inRetry()) {
// This ensures that no new batches are drained until the current in flight batches are fully resolved.
transactionManager.markSequenceUnresolved(expiredBatch.topicPartition);
}
}
sensors.updateProduceRequestMetrics(batches);
// If we have any nodes that are ready to send + have sendable data, poll with 0 timeout so this can immediately
// loop and try sending more data. Otherwise, the timeout will be the smaller value between next batch expiry
// time, and the delay time for checking data availability. Note that the nodes may have data that isn't yet
// sendable due to lingering, backing off, etc. This specifically does not include nodes with sendable data
// that aren't ready to send since they would cause busy looping.
long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);
pollTimeout = Math.min(pollTimeout, this.accumulator.nextExpiryTimeMs() - now);
pollTimeout = Math.max(pollTimeout, 0);
if (!result.readyNodes.isEmpty()) {
log.trace("Nodes with data ready to send: {}", result.readyNodes);
// if some partitions are already ready to be sent, the select time would be 0;
// otherwise if some partition already has some data accumulated but not ready yet,
// the select time will be the time difference between now and its linger expiry time;
// otherwise the select time will be the time difference between now and the metadata expiry time;
pollTimeout = 0;
}
sendProduceRequests(batches, now);
return pollTimeout;
}
private void sendProduceRequests(Map<Integer, List<ProducerBatch>> collated, long now) {
for (Map.Entry<Integer, List<ProducerBatch>> entry : collated.entrySet())
sendProduceRequest(now, entry.getKey(), acks, requestTimeoutMs, entry.getValue());
}
private void sendProduceRequest(long now, int destination, short acks, int timeout, List<ProducerBatch> batches) {
if (batches.isEmpty())
return;
Map<TopicPartition, MemoryRecords> produceRecordsByPartition = new HashMap<>(batches.size());
final Map<TopicPartition, ProducerBatch> recordsByPartition = new HashMap<>(batches.size());
// find the minimum magic version used when creating the record sets
byte minUsedMagic = apiVersions.maxUsableProduceMagic();
for (ProducerBatch batch : batches) {
if (batch.magic() < minUsedMagic)
minUsedMagic = batch.magic();
}
for (ProducerBatch batch : batches) {
TopicPartition tp = batch.topicPartition;
MemoryRecords records = batch.records();
// down convert if necessary to the minimum magic used. In general, there can be a delay between the time
// that the producer starts building the batch and the time that we send the request, and we may have
// chosen the message format based on out-dated metadata. In the worst case, we optimistically chose to use
// the new message format, but found that the broker didn't support it, so we need to down-convert on the
// client before sending. This is intended to handle edge cases around cluster upgrades where brokers may
// not all support the same message format version. For example, if a partition migrates from a broker
// which is supporting the new magic version to one which doesn't, then we will need to convert.
if (!records.hasMatchingMagic(minUsedMagic))
records = batch.records().downConvert(minUsedMagic, 0, time).records();
produceRecordsByPartition.put(tp, records);
recordsByPartition.put(tp, batch);
}
String transactionalId = null;
if (transactionManager != null && transactionManager.isTransactional()) {
transactionalId = transactionManager.transactionalId();
}
ProduceRequest.Builder requestBuilder = ProduceRequest.Builder.forMagic(minUsedMagic, acks, timeout,
produceRecordsByPartition, transactionalId);
RequestCompletionHandler callback = new RequestCompletionHandler() {
public void onComplete(ClientResponse response) {
handleProduceResponse(response, recordsByPartition, time.milliseconds());
}
};
String nodeId = Integer.toString(destination);
ClientRequest clientRequest = client.newClientRequest(nodeId, requestBuilder, now, acks != 0,
requestTimeoutMs, callback);
client.send(clientRequest, now);
log.trace("Sent produce request to {}: {}", nodeId, requestBuilder);
}
sendProducerData方法的逻辑包括如下:
(1)、accumulator.ready方法:遍历每一tp对应的消息队列Deque,如果某一tp对应的leader不存在就放入unknownLeaderTopics集合中;如果tp的最早batch满足发送条件,就把对应的leader方入readyNodes集合中,最后把包含这两个属性的结果返回。
(2)、如果上面一步返回的结果中的unknownLeaderTopics集合不空,遍历集合,然后更新metadata。具体的更新策略过程,会再出一篇文章详细介绍。
(3)、依据client是否与leader对应的node建立好连接,判断node是否ready。对于没有建立连接的node,会初始化连接。
(4)、accumulator.drain方法:遍历readyNodes集合, 对其上的每一个的tp对应的消息队列的最早的batch,添加到ready列表中,返回结果类型为Map<Integer, List<ProducerBatch>>,Integer为结点id,List<ProducerBatch>为该结点上所有tp的最早的消息batch。
(5)、如果要求发送消息的有序性,将对应的tp静默。
(6)、删除过期batch。
(7)、sendProduceRequest方法将每一个node节点的消息batch,封装成一个发送clientRequest请求,然后调用NetWorkClient的send方法。
(8)、调用KafkaClient的poll方法。关于socket的IO操作都是在这个方法进行的,它还是调用 Selector进行的相应操作,而Selector底层则是封装的JavaNIO的相关接口。打算出一篇文章详细介绍。
三、总结
本篇文章简单介绍了Producer发送消息的全过程,其中还会有细节没有讲解到, 后续会按照前言中的计划,分成几篇文章来讲解。