极限定理准则定义

2019-01-09  本文已影响0人  卤蛋大宝贝啊

数列极限

1.定理:

1.若数列收敛,则其任何子列也收敛

2.(唯一性)若数列收敛于常数,那该常数必唯一

3.(有界性)若数列收敛,则数列有界

4.(保号性)若数列收敛于aa>0(或a,则存在正整数<img class=,当n>N时,有a_n>0(或a_n</p><h4>2.准则:</h4><p>1.(夹逼准则)如果数列<img class=\{y_n\}\{z_n\}满足:

(1)x_n \leq y_n \leq z_n (n=1,2,3,……)(2)\lim \limits_{ n \to \infty} x_n = a,\lim \limits_{ n \to \infty} z_n = a

则数列\{y_n\}的极限存在,且\lim \limits_{ n \to \infty} y_n = a

5.单调有界极限必有极限


函数极限

1.定理:

1.(唯一性)如果函数极限存在,那么极限唯一

2.(局部有界性)如果\lim \limits_{x \to x_0} f(x) = A(\exists),则存在正常数M\delta,是的当0<|x-x_0|<\delta时,有|f(x)|\leq M

3.(局部保号性)如果\lim \limits_{x \to x_0} f(x) = A(\exists),且A>0(或A,那么存在正常数<img class=,使当0<|x-x_0|<\delta时,有f(x)>0 (或f(x)</p><h4>2.运算法则:</h4><p>1.(夹逼准则)如果函数<img class=,g(x)h(x)满足下列条件:

(1)f(x)\leq g(x)  \leq h(x);(2)\lim f(x) = A,\lim h(x) = A,则\lim g(x) = A(\exists)


无穷小

1.无穷小比阶

设同一自变量的变化过程中,\lim \alpha(x) = 0,\lim \beta(x),且\beta(x)\neq 0,则:

(1)\lim {\alpha(x) \over \beta(x)} = 0,则称\alpha(x)是比\beta(x)高阶无穷小,记为\alpha(x) = o(\beta(x))

(2)\lim {\alpha(x) \over \beta(x)} = c \neq 0,则称\alpha(x)是与\beta(x)同阶无穷小

(3)\lim {\alpha(x) \over \beta(x)} = 1,则称\alpha(x)是与\beta(x)等价无穷小,记为\alpha(x) \sim	\beta(x)

(4)\lim {\alpha(x) \over {[\beta(x)]^k}} = c \neq 0,则称\alpha(x)\beta(x)k阶无穷小

2.无穷小运算规则

(1)有限个无穷小的和是无穷小

(2)有限个无穷小的乘积是无穷小

(3)有界函数与无穷小的乘积是无穷小

3.无穷小阶数的运算

设m,n为正整数,则

(1)o(x^m)\pm o(x^n)=o(x^l),l=min\{m,n\}(加减法,低阶「吸收」高阶)

(2)o(x^m)\cdot o(x^n) = o(x^{m+n}),x^m\cdot o(x^n) = o(x^{m+n})(乘法,阶数「累加」)

(3)o(x^m)=o(kx^m)=k\cdot o(x^m),k \neq 0且为常数(非零常数不影响阶数)

4.常用等价无穷小

x \sim sinx \sim arcsinx \sim tanx \sim arctanx \sim ln(1+x) \sim e^x-1

a^x-1\sim xlna1-cos\sim {1 \over 2} x^2 ,(1+x)^a-1\sim ax

x-sinx\sim arcsin-x\sim {1 \over 6}x^3


间断点类型

第一类间断点:

(1)可去间断点

\lim \limits_{x \to x_0} f(x) = A \neq f(x_0)(f(x_0)可以无定义)

(2)跳跃间断点

\lim \limits_{x \to x_0^-} f(x)(\exists),\lim \limits_{x \to x_0^+} f(x)(\exists),\lim \limits_{x \to x_0^-} f(x) \neq \lim \limits_{x \to x_0^+} f(x)

第二类间断点:

(1)无穷间断点

\lim \limits_{x \to x_0} f(x)= \pm \infty,\lim \limits_{x \to x_0^-} f(x) \neq \lim \limits_{x \to x_0^+} f(x)

(2)震荡间断点

\lim \limits_{x \to x_0} f(x) 极限震荡不存在,如\lim \limits_{x \to 0} \sin {1\over x },函数在[-1,1]交替震荡取值,极限不存在


TIPS

上一篇下一篇

猜你喜欢

热点阅读