Flink

Flink-sql 基于事件时间的窗口

2021-08-11  本文已影响0人  wudl

1. 基于事件时间的窗口有三种

1.1 基于事件时间的滚动窗口

package com.wudl.flink.sql;

import com.wudl.flink.bean.WaterSensor;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Slide;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.Tumble;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;

import java.time.Duration;

import static org.apache.flink.api.common.eventtime.WatermarkStrategy.forBoundedOutOfOrderness;
import static org.apache.flink.table.api.Expressions.*;

/**
 * @ClassName : Flink_Group_Window  --  基于事件 的处理滚动窗口
 * @Description : Flink sql 窗口
 * @Author :wudl
 * @Date: 2021-08-04 23:13
 */

public class Flink_Group_ShiJianWindow {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnvironment = StreamTableEnvironment.create(env);
        // 读取数据流中的数据并且提取时间搓生成waterMark
        WatermarkStrategy<WaterSensor> waterSensorWatermarkStrategy =   WatermarkStrategy.<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(2))
                .withTimestampAssigner(new SerializableTimestampAssigner<WaterSensor>() {

                    @Override
                    public long extractTimestamp(WaterSensor element, long recordTimestamp) {
                        return element.getTs() * 1000L;
                    }
                });
        DataStreamSource<String> streamSource = env.socketTextStream("192.168.1.180", 9999);
        SingleOutputStreamOperator<WaterSensor> waterDS = streamSource.map(new MapFunction<String, WaterSensor>() {
            @Override
            public WaterSensor map(String s) throws Exception {
                String[] split = s.split(",");
                return new WaterSensor(split[0], Long.parseLong(split[1]), Integer.parseInt(split[2]));
            }
        }).assignTimestampsAndWatermarks(waterSensorWatermarkStrategy);

        // 将流转化为表
        Table table = tableEnvironment.fromDataStream(waterDS,
                $("id"),
                $("ts"),
                $("vc"),
                //  事件的处理时间
                $("rt").rowtime());

        // 开窗滚动窗口计算wordCound
        Table result = table.window(Tumble.over(lit(5).seconds()).on($("rt")).as("tw"))
                .groupBy($("id"), $("tw"))
                .select($("id"), $("id").count());

        // 将结果表转化为流进行输出

        tableEnvironment.toAppendStream(result, Row.class).print();
        env.execute();
    }
}

1.2 基于事件时间的滑动窗口

package com.wudl.flink.sql;

import com.wudl.flink.bean.WaterSensor;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Slide;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.Tumble;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;

import java.time.Duration;

import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.lit;

/**
 * @ClassName : Flink_Group_Window  --  基于事件时间的滑动窗口
 * @Description : Flink sql 窗口
 * @Author :wudl
 * @Date: 2021-08-04 23:13
 */

public class Flink_Group_ShiJian_HuaDongWindow {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnvironment = StreamTableEnvironment.create(env);
        // 读取数据流中的数据并且提取时间搓生成waterMark
        WatermarkStrategy<WaterSensor> waterSensorWatermarkStrategy =   WatermarkStrategy.<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(2))
                .withTimestampAssigner(new SerializableTimestampAssigner<WaterSensor>() {

                    @Override
                    public long extractTimestamp(WaterSensor element, long recordTimestamp) {
                        return element.getTs() * 1000L;
                    }
                });
        DataStreamSource<String> streamSource = env.socketTextStream("192.168.1.180", 9999);
        SingleOutputStreamOperator<WaterSensor> waterDS = streamSource.map(new MapFunction<String, WaterSensor>() {
            @Override
            public WaterSensor map(String s) throws Exception {
                String[] split = s.split(",");
                return new WaterSensor(split[0], Long.parseLong(split[1]), Integer.parseInt(split[2]));
            }
        }).assignTimestampsAndWatermarks(waterSensorWatermarkStrategy);

        // 将流转化为表
        Table table = tableEnvironment.fromDataStream(waterDS,
                $("id"),
                $("ts"),
                $("vc"),
                //  事件的处理时间
                $("rt").rowtime());

        // 开窗滚动窗口计算wordCound
        Table result = table.window(Slide.over(lit(6).seconds()).every(lit(2).seconds()).on($("rt")).as($("sw")))
                .groupBy($("id"), $("sw"))
                .select($("id"), $("id").count());

        // 将结果表转化为流进行输出

        tableEnvironment.toAppendStream(result, Row.class).print();
        env.execute();
    }
}

1.3 基于事件时间的会话窗口

package com.wudl.flink.sql;

import com.wudl.flink.bean.WaterSensor;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Session;
import org.apache.flink.table.api.Slide;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;

import java.time.Duration;

import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.lit;

/**
 * @ClassName : Flink_Group_Window  --  基于事件时间的滑动窗口
 * @Description : Flink sql 窗口
 * @Author :wudl
 * @Date: 2021-08-04 23:13
 */

public class Flink_Group_ShiJian_huihuaWindow {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnvironment = StreamTableEnvironment.create(env);
        // 读取数据流中的数据并且提取时间搓生成waterMark
        WatermarkStrategy<WaterSensor> waterSensorWatermarkStrategy =   WatermarkStrategy.<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(2))
                .withTimestampAssigner(new SerializableTimestampAssigner<WaterSensor>() {

                    @Override
                    public long extractTimestamp(WaterSensor element, long recordTimestamp) {
                        return element.getTs() * 1000L;
                    }
                });
        DataStreamSource<String> streamSource = env.socketTextStream("192.168.1.180", 9999);
        SingleOutputStreamOperator<WaterSensor> waterDS = streamSource.map(new MapFunction<String, WaterSensor>() {
            @Override
            public WaterSensor map(String s) throws Exception {
                String[] split = s.split(",");
                return new WaterSensor(split[0], Long.parseLong(split[1]), Integer.parseInt(split[2]));
            }
        }).assignTimestampsAndWatermarks(waterSensorWatermarkStrategy);

        // 将流转化为表
        Table table = tableEnvironment.fromDataStream(waterDS,
                $("id"),
                $("ts"),
                $("vc"),
                //  事件的处理时间
                $("rt").rowtime());

        // 开窗滚动窗口计算wordCound
        Table result = table.window(Session.withGap(lit(5).seconds()).on($("rt")).as("sw"))
                .groupBy($("id"), $("sw"))
                .select($("id"), $("id").count());

        // 将结果表转化为流进行输出

        tableEnvironment.toAppendStream(result, Row.class).print();
        env.execute();
    }
}

上一篇下一篇

猜你喜欢

热点阅读