一些收藏Java

JVM有哪些垃圾回收器,实际如何选择?

2022-05-18  本文已影响0人  废柴程序员
image.png

推荐:NB大厂连环问,JVM到骨髓(基础-面试-调优),瞬间涨薪3K不成问题!

图中展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,则说明它们可以搭配使用。虚拟机所处的区域则表示它是属于新生代还是老年代收集器。

  1. 新生代收集器(全部的都是复制算法):Serial、ParNew、Parallel Scavenge
  2. 老年代收集器:CMS(标记-清理)、Serial Old(标记-整理)、Parallel Old(标记整理)
  3. 整堆收集器: G1(一个Region中是标记-清除算法,2个Region之间是复制算法) 同时,先解释几个名词:

1.Serial收集器是最基本的、发展历史最悠久的收集器。

特点:单线程、简单高效(与其他收集器的单线程相比),对于限定单个CPU的环境来说,Serial收集器 由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程手机效率。收集器进行垃圾回收 时,必须暂停其他所有的工作线程,直到它结束(Stop The World)。 应用场景:适用于Client模式下的虚拟机。

Serial / Serial Old收集器运行示意图

image.png

2.ParNew收集器其实就是Serial收集器的多线程版本。

除了使用多线程外其余行为均和Serial收集器一模一样(参数控制、收集算法、Stop The World、对象 分配规则、回收策略等)。

特点:多线程、ParNew收集器默认开启的收集线程数与CPU的数量相同,在CPU非常多的环境中,可以 使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。

和Serial收集器一样存在Stop The World问题

应用场景:ParNew收集器是许多运行在Server模式下的虚拟机中首选的新生代收集器,因为它是除了 Serial收集器外,唯一一个能与CMS收集器配合工作的。

ParNew/Serial Old组合收集器运行示意图如下:


image.png

3.Parallel Scavenge 收集器与吞吐量关系密切,故也称为吞吐量优先收集器。

特点:属于新生代收集器也是采用复制算法的收集器,又是并行的多线程收集器(与ParNew收集器类 似)。 该收集器的目标是达到一个可控制的吞吐量。

还有一个值得关注的点是:GC自适应调节策略(与 ParNew收集器最重要的一个区别)

GC自适应调节策略:Parallel Scavenge收集器可设置-XX:+UseAdptiveSizePolicy参数。

当开关打开时不 需要手动指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRation)、晋升老年代 的对象年龄(-XX:PretenureSizeThreshold)等,虚拟机会根据系统的运行状况收集性能监控信息,动 态设置这些参数以提供最优的停顿时间和最高的吞吐量,这种调节方式称为GC的自适应调节策略。

Parallel Scavenge收集器使用两个参数控制吞吐量:

4.Serial Old是Serial收集器的老年代版本。

特点:同样是单线程收集器,采用标记-整理算法。 应用场景:主要也是使用在Client模式下的虚拟机中。也可在Server模式下使用。 Server模式下主要的两大用途(在后续中详细讲解···):

  1. 在JDK1.5以及以前的版本中与Parallel Scavenge收集器搭配使用。
  2. 作为CMS收集器的后备方案,在并发收集Concurent Mode Failure时使用。 Serial / Serial Old收集器工作过程图(Serial收集器图示相同):
image.png

5.Parallel Old是Parallel Scavenge收集器的老年代版本。

特点:多线程,采用标记-整理算法。

应用场景:注重高吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge+Parallel Old 收 集器。

6.CMS收集器是一种以获取最短回收停顿时间为目标的收集器。

特点:基于标记-清除算法实现。并发收集、低停顿。

应用场景:适用于注重服务的响应速度,希望系统停顿时间最短,给用户带来更好的体验等场景下。如 web程序、b/s服务。

CMS收集器的运行过程分为下列4步:

CMS收集器的工作过程图:

image.png

CMS收集器的缺点:

对CPU资源非常敏感。

无法处理浮动垃圾,可能出现Concurrent Model Failure失败而导致另一次Full GC的产生。 因为采用标记-清除算法所以会存在空间碎片的问题,导致大对象无法分配空间,不得不提前触发 一次Full GC。

image.png

7.G1收集器一款面向服务端应用的垃圾收集器。

特点如下:

并行与并发:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU来缩短Stop-The-World停顿 时间。部分收集器原本需要停顿Java线程来执行GC动作,G1收集器仍然可以通过并发的方式让Java程序 继续运行。

分代收集:G1能够独自管理整个Java堆,并且采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果

空间整合:G1运作期间不会产生空间碎片,收集后能提供规整的可用内存。

可预测的停顿:G1除了追求低停顿外,还能建立可预测的停顿时间模型。能让使用者明确指定在一个长度为M毫秒的时间段内,消耗在垃圾收集上的时间不得超过N毫秒。

G1收集器运行示意图:

image.png

关于gc的选择

除非应用程序有非常严格的暂停时间要求,否则请先运行应用程序并允许VM选择收集器(如果没有特别 要求。使用VM提供给的默认GC就好)。 如有必要,调整堆大小以提高性能。 如果性能仍然不能满足目标,请使用以下准则作为选择收集器的起点:

这些准则仅提供选择收集器的起点,因为性能取决于堆的大小,应用程序维护的实时数据量以及可用处 理器的数量和速度。

如果推荐的收集器没有达到所需的性能,则首先尝试调整堆和新生代大小以达到所需的目标。

如果性能 仍然不足,尝试使用其他收集器

总体原则:减少STOP THE WORD时间,使用并发收集器(比如CMS+ParNew,G1)来减少暂停时间, 加快响应时间,并使用并行收集器来增加多处理器硬件上的总体吞吐量。

上一篇下一篇

猜你喜欢

热点阅读