knn 简介
2020-09-18 本文已影响0人
wwq2020
简介
思想就是计算数据集中数据对应的向量和分类向量的欧式距离,最近的k个

优缺点
优点:精度高,对异常数据不敏感
缺点:计算和空间复杂度高
代码来自机器学习实战
from numpy import *
import operator
def classify(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
sortedClassCount = sorted(
classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def createDataSet():
group = array([[1, 1.1], [1, 1], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels