AI算法模型之应用部署概述

2023-01-12  本文已影响0人  智驱力AI

模型部署框架类型

算法模型的部署主要可以分成两个方面。一是在移动端/边缘端的部署,即嵌入式,通常以SDK形式呈现。另一个是云端/服务端,通常以服务的形式呈现;今天着重聊聊部署流程,后续移动端部署、具体厂商的智能硬件部署、云端server会开专题介绍。

边缘端

模型训练:通过pytorch、tensorflow等深度学习框架进行训练算法模型,得到模型权重文件,模型训练部分今天不着重介绍,后续专题会展开讨论训练tricks、模型调优、模型剪枝、蒸馏、量化。

模型转化:把权重文件转为对应智能硬件的形态,方便利用对应的GPU、NPU或者IPU智能硬件加速单元来达到加速效果。

算法部署:依照原模型算法推理逻辑对应实现在嵌入式端。

模型转化

包括英伟达、⾼通、华为、AMD在内的⼚家,都在神经⽹络加速⽅⾯投⼊了研发⼒量。通过量化、裁剪和压缩来降低模型尺⼨。更快的推断可以通过在降低精度的前提下使⽤⾼效计算平台⽽达到,其中包括intel MKL-DNN,ARM CMSIS,Qualcomm SNPE,Nvidia TensorRT,海思、RockChip RKNN,SigmarStar SGS_IPU等。

依TensorRT为例,其他平台的部署系列后面会出详细手把手教程。

TensorRT

方式一:把训练得到的权重文件如(pt,pb)先转化为Onnx形式,使用onnx-simplifier对模型进行图优化,得到一个简洁明了的模型图,最后通过trtexec转为对应的engine文件。

以Yolov5为例,导出onnx代码

    # YOLOv5 ONNX export
    try:
        check_requirements(('onnx',))
        import onnx

        LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
        f = file.with_suffix('.onnx')

        torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
                          training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
                          do_constant_folding=not train,
                          input_names=['images'],
                          output_names=['output'],
                          dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'},  # shape(1,3,640,640)
                                        'output': {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
                                        } if dynamic else None)

        # Checks
        model_onnx = onnx.load(f)  # load onnx model
        onnx.checker.check_model(model_onnx)  # check onnx model
        # LOGGER.info(onnx.helper.printable_graph(model_onnx.graph))  # print

        # Simplify
        if simplify:
            try:
                check_requirements(('onnx-simplifier',))
                import onnxsim

                LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
                model_onnx, check = onnxsim.simplify(
                    model_onnx,
                    dynamic_input_shape=dynamic,
                    input_shapes={'images': list(im.shape)} if dynamic else None)
                assert check, 'assert check failed'
                onnx.save(model_onnx, f)
            except Exception as e:
                LOGGER.info(f'{prefix} simplifier failure: {e}')
        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
        return f
    except Exception as e:
        LOGGER.info(f'{prefix} export failure: {e}')

导出后的Onnx模型图

image.png

Yolov5-Onnx-结构图

然后执行

trtexec --onnx=weights/yolov5s.onnx --saveEngine=weights/yolov5s.engine

对于YOLOV5,官方已经提供了一键转各种格式的脚本,具体参考

在此仅提供模型转化的方法思路。

方式二:根据TensorRT官方API文档,手动搭建模型结构,最后根据API接口把模型转成engine文件。

同样的依照Yolov5为例:

提取模型权重

import sys
import argparse
import os
import struct
import torch
from utils.torch_utils import select_device

def parse_args():
    parser = argparse.ArgumentParser(description='Convert .pt file to .wts')
    parser.add_argument('-w', '--weights', required=True,
                        help='Input weights (.pt) file path (required)')
    parser.add_argument(
        '-o', '--output', help='Output (.wts) file path (optional)')
    parser.add_argument(
        '-t', '--type', type=str, default='detect', choices=['detect', 'cls', 'seg'],
        help='determines the model is detection/classification')
    args = parser.parse_args()
    if not os.path.isfile(args.weights):
        raise SystemExit('Invalid input file')
    if not args.output:
        args.output = os.path.splitext(args.weights)[0] + '.wts'
    elif os.path.isdir(args.output):
        args.output = os.path.join(
            args.output,
            os.path.splitext(os.path.basename(args.weights))[0] + '.wts')
    return args.weights, args.output, args.type

pt_file, wts_file, m_type = parse_args()
print(f'Generating .wts for {m_type} model')

# Load model
print(f'Loading {pt_file}')
device = select_device('cpu')
model = torch.load(pt_file, map_location=device)  # Load FP32 weights
model = model['ema' if model.get('ema') else 'model'].float()

if m_type in ['detect', 'seg']:
    # update anchor_grid info
    anchor_grid = model.model[-1].anchors * model.model[-1].stride[..., None, None]
    # model.model[-1].anchor_grid = anchor_grid
    delattr(model.model[-1], 'anchor_grid')  # model.model[-1] is detect layer
    # The parameters are saved in the OrderDict through the "register_buffer" method, and then saved to the weight.
    model.model[-1].register_buffer("anchor_grid", anchor_grid)
    model.model[-1].register_buffer("strides", model.model[-1].stride)

model.to(device).eval()

print(f'Writing into {wts_file}')
with open(wts_file, 'w') as f:
    f.write('{}\n'.format(len(model.state_dict().keys())))
    for k, v in model.state_dict().items():
        vr = v.reshape(-1).cpu().numpy()
        f.write('{} {} '.format(k, len(vr)))
        for vv in vr:
            f.write(' ')
            f.write(struct.pack('>f', float(vv)).hex())
        f.write('\n')

根据API接口构建编译Yolov5模型结构

核心代码块

ICudaEngine* build_engine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, float& gd, float& gw, std::string& wts_name) {
    INetworkDefinition* network = builder->createNetworkV2(0U);

    // Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME
    ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W });
    assert(data);
    std::map<std::string, Weights> weightMap = loadWeights(wts_name);
    /* ------ yolov5 backbone------ */
    auto conv0 = convBlock(network, weightMap, *data,  get_width(64, gw), 6, 2, 1,  "model.0");
    assert(conv0);
    auto conv1 = convBlock(network, weightMap, *conv0->getOutput(0), get_width(128, gw), 3, 2, 1, "model.1");
    auto bottleneck_CSP2 = C3(network, weightMap, *conv1->getOutput(0), get_width(128, gw), get_width(128, gw), get_depth(3, gd), true, 1, 0.5, "model.2");
    auto conv3 = convBlock(network, weightMap, *bottleneck_CSP2->getOutput(0), get_width(256, gw), 3, 2, 1, "model.3");
    auto bottleneck_csp4 = C3(network, weightMap, *conv3->getOutput(0), get_width(256, gw), get_width(256, gw), get_depth(6, gd), true, 1, 0.5, "model.4");
    auto conv5 = convBlock(network, weightMap, *bottleneck_csp4->getOutput(0), get_width(512, gw), 3, 2, 1, "model.5");
    auto bottleneck_csp6 = C3(network, weightMap, *conv5->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(9, gd), true, 1, 0.5, "model.6");
    auto conv7 = convBlock(network, weightMap, *bottleneck_csp6->getOutput(0), get_width(1024, gw), 3, 2, 1, "model.7");
    auto bottleneck_csp8 = C3(network, weightMap, *conv7->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), true, 1, 0.5, "model.8");
    auto spp9 = SPPF(network, weightMap, *bottleneck_csp8->getOutput(0), get_width(1024, gw), get_width(1024, gw), 5, "model.9");
    /* ------ yolov5 head ------ */
    auto conv10 = convBlock(network, weightMap, *spp9->getOutput(0), get_width(512, gw), 1, 1, 1, "model.10");

    auto upsample11 = network->addResize(*conv10->getOutput(0));
    assert(upsample11);
    upsample11->setResizeMode(ResizeMode::kNEAREST);
    upsample11->setOutputDimensions(bottleneck_csp6->getOutput(0)->getDimensions());

    ITensor* inputTensors12[] = { upsample11->getOutput(0), bottleneck_csp6->getOutput(0) };
    auto cat12 = network->addConcatenation(inputTensors12, 2);
    auto bottleneck_csp13 = C3(network, weightMap, *cat12->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.13");
    auto conv14 = convBlock(network, weightMap, *bottleneck_csp13->getOutput(0), get_width(256, gw), 1, 1, 1, "model.14");

    auto upsample15 = network->addResize(*conv14->getOutput(0));
    assert(upsample15);
    upsample15->setResizeMode(ResizeMode::kNEAREST);
    upsample15->setOutputDimensions(bottleneck_csp4->getOutput(0)->getDimensions());

    ITensor* inputTensors16[] = { upsample15->getOutput(0), bottleneck_csp4->getOutput(0) };
    auto cat16 = network->addConcatenation(inputTensors16, 2);

    auto bottleneck_csp17 = C3(network, weightMap, *cat16->getOutput(0), get_width(512, gw), get_width(256, gw), get_depth(3, gd), false, 1, 0.5, "model.17");

    /* ------ detect ------ */
    IConvolutionLayer* det0 = network->addConvolutionNd(*bottleneck_csp17->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.0.weight"], weightMap["model.24.m.0.bias"]);
    auto conv18 = convBlock(network, weightMap, *bottleneck_csp17->getOutput(0), get_width(256, gw), 3, 2, 1, "model.18");
    ITensor* inputTensors19[] = { conv18->getOutput(0), conv14->getOutput(0) };
    auto cat19 = network->addConcatenation(inputTensors19, 2);
    auto bottleneck_csp20 = C3(network, weightMap, *cat19->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.20");
    IConvolutionLayer* det1 = network->addConvolutionNd(*bottleneck_csp20->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.1.weight"], weightMap["model.24.m.1.bias"]);
    auto conv21 = convBlock(network, weightMap, *bottleneck_csp20->getOutput(0), get_width(512, gw), 3, 2, 1, "model.21");
    ITensor* inputTensors22[] = { conv21->getOutput(0), conv10->getOutput(0) };
    auto cat22 = network->addConcatenation(inputTensors22, 2);
    auto bottleneck_csp23 = C3(network, weightMap, *cat22->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.23");
    IConvolutionLayer* det2 = network->addConvolutionNd(*bottleneck_csp23->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.2.weight"], weightMap["model.24.m.2.bias"]);

    auto yolo = addYoLoLayer(network, weightMap, "model.24", std::vector<IConvolutionLayer*>{det0, det1, det2});
    yolo->getOutput(0)->setName(OUTPUT_BLOB_NAME);
    network->markOutput(*yolo->getOutput(0));
    // Build engine
    builder->setMaxBatchSize(maxBatchSize);
    config->setMaxWorkspaceSize(16 * (1 << 20));  // 16MB
#if defined(USE_FP16)
    config->setFlag(BuilderFlag::kFP16);
#elif defined(USE_INT8)
    std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl;
    assert(builder->platformHasFastInt8());
    config->setFlag(BuilderFlag::kINT8);
    Int8EntropyCalibrator2* calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/", "int8calib.table", INPUT_BLOB_NAME);
    config->setInt8Calibrator(calibrator);
#endif

    std::cout << "Building engine, please wait for a while..." << std::endl;
    ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
    std::cout << "Build engine successfully!" << std::endl;

    // Don't need the network any more
    network->destroy();

    // Release host memory
    for (auto& mem : weightMap) {
        free((void*)(mem.second.values));
    }

    return engine;
}

具体参照

方式三:跟方式一一样先转成onnx图模型,根据TensorRT-onnx_parser模型转成engine文件。

核心代码块

bool compile(
        Mode mode,
        unsigned int maxBatchSize,
        const ModelSource& source,
        const CompileOutput& saveto,
        std::vector<InputDims> inputsDimsSetup,
        Int8Process int8process,
        const std::string& int8ImageDirectory,
        const std::string& int8EntropyCalibratorFile,
        const size_t maxWorkspaceSize) {

        if (mode == Mode::INT8 && int8process == nullptr) {
            INFOE("int8process must not nullptr, when in int8 mode.");
            return false;
        }

        bool hasEntropyCalibrator = false;
        vector<uint8_t> entropyCalibratorData;
        vector<string> entropyCalibratorFiles;
        if (mode == Mode::INT8) {
            if (!int8EntropyCalibratorFile.empty()) {
                if (iLogger::exists(int8EntropyCalibratorFile)) {
                    entropyCalibratorData = iLogger::load_file(int8EntropyCalibratorFile);
                    if (entropyCalibratorData.empty()) {
                        INFOE("entropyCalibratorFile is set as: %s, but we read is empty.", int8EntropyCalibratorFile.c_str());
                        return false;
                    }
                    hasEntropyCalibrator = true;
                }
            }

            if (hasEntropyCalibrator) {
                if (!int8ImageDirectory.empty()) {
                    INFOW("imageDirectory is ignore, when entropyCalibratorFile is set");
                }
            }
            else {
                if (int8process == nullptr) {
                    INFOE("int8process must be set. when Mode is '%s'", mode_string(mode));
                    return false;
                }

                entropyCalibratorFiles = iLogger::find_files(int8ImageDirectory, "*.jpg;*.png;*.bmp;*.jpeg;*.tiff");
                if (entropyCalibratorFiles.empty()) {
                    INFOE("Can not find any images(jpg/png/bmp/jpeg/tiff) from directory: %s", int8ImageDirectory.c_str());
                    return false;
                }

                if(entropyCalibratorFiles.size() < maxBatchSize){
                    INFOW("Too few images provided, %d[provided] < %d[max batch size], image copy will be performed", entropyCalibratorFiles.size(), maxBatchSize);

                    int old_size = entropyCalibratorFiles.size();
                    for(int i = old_size; i < maxBatchSize; ++i)
                        entropyCalibratorFiles.push_back(entropyCalibratorFiles[i % old_size]);
                }
            }
        }
        else {
            if (hasEntropyCalibrator) {
                INFOW("int8EntropyCalibratorFile is ignore, when Mode is '%s'", mode_string(mode));
            }
        }

        INFO("Compile %s %s.", mode_string(mode), source.descript().c_str());
        shared_ptr<IBuilder> builder(createInferBuilder(gLogger), destroy_nvidia_pointer<IBuilder>);
        if (builder == nullptr) {
            INFOE("Can not create builder.");
            return false;
        }

        shared_ptr<IBuilderConfig> config(builder->createBuilderConfig(), destroy_nvidia_pointer<IBuilderConfig>);
        if (mode == Mode::FP16) {
            if (!builder->platformHasFastFp16()) {
                INFOW("Platform not have fast fp16 support");
            }
            config->setFlag(BuilderFlag::kFP16);
        }
        else if (mode == Mode::INT8) {
            if (!builder->platformHasFastInt8()) {
                INFOW("Platform not have fast int8 support");
            }
            config->setFlag(BuilderFlag::kINT8);
        }

        shared_ptr<INetworkDefinition> network;
        //shared_ptr<ICaffeParser> caffeParser;
        shared_ptr<nvonnxparser::IParser> onnxParser;
        if(source.type() == ModelSourceType::OnnX || source.type() == ModelSourceType::OnnXData){

            const auto explicitBatch = 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
            network = shared_ptr<INetworkDefinition>(builder->createNetworkV2(explicitBatch), destroy_nvidia_pointer<INetworkDefinition>);

            vector<nvinfer1::Dims> dims_setup(inputsDimsSetup.size());
            for(int i = 0; i < inputsDimsSetup.size(); ++i){
                auto s = inputsDimsSetup[i];
                dims_setup[i] = convert_to_trt_dims(s.dims());
                dims_setup[i].d[0] = -1;
            }

            //from onnx is not markOutput
            onnxParser.reset(nvonnxparser::createParser(*network, gLogger, dims_setup), destroy_nvidia_pointer<nvonnxparser::IParser>);
            if (onnxParser == nullptr) {
                INFOE("Can not create parser.");
                return false;
            }

            if(source.type() == ModelSourceType::OnnX){
                if (!onnxParser->parseFromFile(source.onnxmodel().c_str(), 1)) {
                    INFOE("Can not parse OnnX file: %s", source.onnxmodel().c_str());
                    return false;
                }
            }else{
                if (!onnxParser->parseFromData(source.onnx_data(), source.onnx_data_size(), 1)) {
                    INFOE("Can not parse OnnX file: %s", source.onnxmodel().c_str());
                    return false;
                }
            }
        }
        else {
            INFOE("not implementation source type: %d", source.type());
            Assert(false);
        }

        set_layer_hook_reshape(nullptr);
        auto inputTensor = network->getInput(0);
        auto inputDims = inputTensor->getDimensions();

        shared_ptr<Int8EntropyCalibrator> int8Calibrator;
        if (mode == Mode::INT8) {
            auto calibratorDims = inputDims;
            calibratorDims.d[0] = maxBatchSize;

            if (hasEntropyCalibrator) {
                INFO("Using exist entropy calibrator data[%d bytes]: %s", entropyCalibratorData.size(), int8EntropyCalibratorFile.c_str());
                int8Calibrator.reset(new Int8EntropyCalibrator(
                    entropyCalibratorData, calibratorDims, int8process
                ));
            }
            else {
                INFO("Using image list[%d files]: %s", entropyCalibratorFiles.size(), int8ImageDirectory.c_str());
                int8Calibrator.reset(new Int8EntropyCalibrator(
                    entropyCalibratorFiles, calibratorDims, int8process
                ));
            }
            config->setInt8Calibrator(int8Calibrator.get());
        }

        INFO("Input shape is %s", join_dims(vector<int>(inputDims.d, inputDims.d + inputDims.nbDims)).c_str());
        INFO("Set max batch size = %d", maxBatchSize);
        INFO("Set max workspace size = %.2f MB", maxWorkspaceSize / 1024.0f / 1024.0f);
        INFO("Base device: %s", CUDATools::device_description().c_str());

        int net_num_input = network->getNbInputs();
        INFO("Network has %d inputs:", net_num_input);
        vector<string> input_names(net_num_input);
        for(int i = 0; i < net_num_input; ++i){
            auto tensor = network->getInput(i);
            auto dims = tensor->getDimensions();
            auto dims_str = join_dims(vector<int>(dims.d, dims.d+dims.nbDims));
            INFO("      %d.[%s] shape is %s", i, tensor->getName(), dims_str.c_str());

            input_names[i] = tensor->getName();
        }

        int net_num_output = network->getNbOutputs();
        INFO("Network has %d outputs:", net_num_output);
        for(int i = 0; i < net_num_output; ++i){
            auto tensor = network->getOutput(i);
            auto dims = tensor->getDimensions();
            auto dims_str = join_dims(vector<int>(dims.d, dims.d+dims.nbDims));
            INFO("      %d.[%s] shape is %s", i, tensor->getName(), dims_str.c_str());
        }

        int net_num_layers = network->getNbLayers();
        INFO("Network has %d layers:", net_num_layers);
        for(int i = 0; i < net_num_layers; ++i){
            auto layer = network->getLayer(i);
            auto name = layer->getName();
            auto type_str = layer_type_name(layer);
            auto input0 = layer->getInput(0);
            if(input0 == nullptr) continue;

            auto output0 = layer->getOutput(0);
            auto input_dims = input0->getDimensions();
            auto output_dims = output0->getDimensions();
            bool has_input = layer_has_input_tensor(layer);
            bool has_output = layer_has_output_tensor(layer);
            auto descript = layer_descript(layer);
            type_str = iLogger::align_blank(type_str, 18);
            auto input_dims_str = iLogger::align_blank(dims_str(input_dims), 18);
            auto output_dims_str = iLogger::align_blank(dims_str(output_dims), 18);
            auto number_str = iLogger::align_blank(format("%d.", i), 4);

            const char* token = "      ";
            if(has_input)
                token = "  >>> ";
            else if(has_output)
                token = "  *** ";

            INFOV("%s%s%s %s-> %s%s", token, 
                number_str.c_str(), 
                type_str.c_str(),
                input_dims_str.c_str(),
                output_dims_str.c_str(),
                descript.c_str()
            );
        }

        builder->setMaxBatchSize(maxBatchSize);
        config->setMaxWorkspaceSize(maxWorkspaceSize);

        auto profile = builder->createOptimizationProfile();
        for(int i = 0; i < net_num_input; ++i){
            auto input = network->getInput(i);
            auto input_dims = input->getDimensions();
            input_dims.d[0] = 1;
            profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kMIN, input_dims);
            profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kOPT, input_dims);
            input_dims.d[0] = maxBatchSize;
            profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kMAX, input_dims);
        }

        // not need
        // for(int i = 0; i < net_num_output; ++i){
        //  auto output = network->getOutput(i);
        //  auto output_dims = output->getDimensions();
        //  output_dims.d[0] = 1;
        //  profile->setDimensions(output->getName(), nvinfer1::OptProfileSelector::kMIN, output_dims);
        //  profile->setDimensions(output->getName(), nvinfer1::OptProfileSelector::kOPT, output_dims);
        //  output_dims.d[0] = maxBatchSize;
        //  profile->setDimensions(output->getName(), nvinfer1::OptProfileSelector::kMAX, output_dims);
        // }
        config->addOptimizationProfile(profile);

        // error on jetson
        // auto timing_cache = shared_ptr<nvinfer1::ITimingCache>(config->createTimingCache(nullptr, 0), [](nvinfer1::ITimingCache* ptr){ptr->reset();});
        // config->setTimingCache(*timing_cache, false);
        // config->setFlag(BuilderFlag::kGPU_FALLBACK);
        // config->setDefaultDeviceType(DeviceType::kDLA);
        // config->setDLACore(0);

        INFO("Building engine...");
        auto time_start = iLogger::timestamp_now();
        shared_ptr<ICudaEngine> engine(builder->buildEngineWithConfig(*network, *config), destroy_nvidia_pointer<ICudaEngine>);
        if (engine == nullptr) {
            INFOE("engine is nullptr");
            return false;
        }

        if (mode == Mode::INT8) {
            if (!hasEntropyCalibrator) {
                if (!int8EntropyCalibratorFile.empty()) {
                    INFO("Save calibrator to: %s", int8EntropyCalibratorFile.c_str());
                    iLogger::save_file(int8EntropyCalibratorFile, int8Calibrator->getEntropyCalibratorData());
                }
                else {
                    INFO("No set entropyCalibratorFile, and entropyCalibrator will not save.");
                }
            }
        }

        INFO("Build done %lld ms !", iLogger::timestamp_now() - time_start);

        // serialize the engine, then close everything down
        shared_ptr<IHostMemory> seridata(engine->serialize(), destroy_nvidia_pointer<IHostMemory>);
        if(saveto.type() == CompileOutputType::File){
            return iLogger::save_file(saveto.file(), seridata->data(), seridata->size());
        }else{
            ((CompileOutput&)saveto).set_data(vector<uint8_t>((uint8_t*)seridata->data(), (uint8_t*)seridata->data()+seridata->size()));
            return true;
        }
    }
}; //namespace TRTBuilder

具体参照

至此模型转化这部分完成。

三种方式的优缺点:

方式一、方式三相对于方式二更为简单方便快捷,特别方式一零代码即可实现模型的转化,反观方式二需要清晰模型结构,清晰API接口算子并手撸代码完成构建engine。但方式一、方式三对于一些模型如transform、Vit模型由于一些算子还未支持,故不能一键转化,而方式二则可完成,总体来说方式二相比其他更为灵活,但上手难度更大。

算法部署

整体流程

image.png

流程图

输入:着重说下视频流如rtsp、webrtc、rtmp这种实时视频流,我们需要先对流进行解码从而得到RGB图像(YUV420、NV12、NV21 -> RGB),其中解码又分为软解码和硬解码,软解码如libx264,libx265等,硬解码如Nvidia的CUVID以及海思,RockChip的Mpp等,关于视频流的编解码后续会开专题详细介绍。

预处理:把得到的RGB图像依照跟训练时进行同样的预处理,如Yolov5需要自适应缩放、归一化操作;人脸检测scrfd需要自适应缩放、减均值127.5,除方差128等操作;对于自适应缩放可以采用仿射变换、letterbox的形式实现;对于减均值、除方差,NVIDIA可以采用CUDA进行操作,从而达到提速的效果。

模型推理:把经过上边两步的图像data送进序列化好的engine进行model_forward,得到output_tensor。

后处理:把上述得到的output_tensor,进行后处理decode,依照目标检测为例这个操作一般为general_anchor、nms、iou,坐标映射到原图(transform_pred)等操作;分类模型则一般为get_max_pred;姿态识别模型一般为keypoints_from_heatmap、transform_pred等。

输出:经过后处理后,就得到了最终的输出结果,如检测项,分类类别,keypoints,人脸坐标等等,最终可根据实际场景进行告警推送等应用开发,或者把告警图片进行编码(RGB->YUV420)以视频流的方式推送到流媒体服务器。

生成SDK

对于Hisi3516、3519或者rv1126、rv1109这类平台,flash空间小,需要交叉编译,可打包成动态链接库,提供接口函数供上层应用调用;对于rv3399、rk3568、jetson产品自带Ubuntu或者Linaro系统,可终端机自行编译,并且可部署python,可利用pybind11进行衔接交互。

云服务端

关于模型的云端部署,业界也有许多开源的解决方案,但目前为止来看,还没有一种真的可以一统业界,或者说称得上是绝对主流的方案。

针对云端部署的框架里,我们可以大致分为两类,一种是主要着力于解决推理性能,提高推理速度的框架,这一类里有诸如tensorflow的tensorflow serving、NVIDIA基于他们tensorRt的Triton(原TensorRt Serving),onnx-runtime,国内的paddle servering等, 将模型转化为某一特定形式(转化的过程中可能伴有一些优化的操作), 并对外提供服务,以此来获得相对较高的性能。

另一类框架主要着眼于结合模型整个生命周期,对模型部署进行管理,比如mlflow、seldon、bentoml、cortex等等,这些框架的设计与思路其实五花八门,有的为了和训练部分接轨,把模型文件管理也纳入了。有的则是只管到容器编排的部分,用户需要自己做好容器,它帮你发到k8s上之类的(这种情况甚至能和第一类框架连起来用)。当然也有专注于模型推理这一小块的。

写在最后

算法应用落地部署已然成为AI领域关键的一环,由于国外产品制裁,我们也大力支持国产智能硬件AI落地,已在海思、瑞芯微、sigmastar、寒武纪、地平线等国产芯片部署多款算法,如目标检测(YOLOV5等)、人脸识别(scrfd+arcface等)、姿势识别(lite-hrnet等)、动作序列识别(tsm等),目标追踪(MOT,bytetrack),拥有多行业、多领域真实数据集,并形成多款AI智能产品,落地应用在安防、加油站、充电桩、火车站、商场等各大行业,后续也会开设专题介绍各大智能硬件、各大算法的详细部署流程,致力于发展壮大国产AI部署社区生态。

今天就先到这里,谢谢,点点关注不迷路。

image.png

智驱力-科技驱动生产力

上一篇下一篇

猜你喜欢

热点阅读