函数的相关与卷积

2019-10-27  本文已影响0人  Upsame

原创 蒲山牧: https://www.upsame.com/

[TOC]

信号处理过程中

  1. 卷积的定义


    卷积

    卷积满足交换律、分配律、结合律。也具有位移不变性以及缩放性质。

  2. 互相关的定义


    互相关

    替换变量后有:


    互相关

    上述两式完全等价。

性质

  1. 自相关

    在信号分析当中通常将自相关函数称之为自协方差方程,定义如下:


    KDMAwn.png

    自相关是互相关的一种特殊情况,就是一个序列和它本身做相关,主要用来衡量一个序列在不同时刻取值的相似程度。

数理统计中

  1. 相关:我们通常说的相关系数的学名是---皮尔逊积差系数(Pearson's product moment coefficient),这种相关系数只对两个变量的线性关系敏感。
    Pearson 相关系数使用两个变量的协方差和标准差来定义:

    其中,cov 是协方差,sigma 是标准差。因为 cov 可以写作:

    所以 Person 相关系数的定义式可以写作:

  2. 自相关的定义式如下:

    如果随机过程是一个宽平稳过程,那么均值和方差都不是时间的函数,所以,自相关定义式变为:

    在某些学科中,会去掉归一化因子σ2,使用自协方差来代替自相关。但是归一化因子可以让自相关的取值在 [-1, +1] 之间,不会随着序列的绝对大小而变化。

在信号处理中:
自相关的定义会去掉归一化,即不用减去均值,也不用除以方差。当除以方差时,一般叫做另外一个名字:自相关系数(Autocorrelation coefficient)。

本文由博客 首发于蒲山牧的博客

上一篇下一篇

猜你喜欢

热点阅读