scikit-learn tutorial page(1)
网址:http://scikit-learn.org/stable/tutorial/basic/tutorial.html#machine-learning-the-problem-setting
根据scikit主页的入门教材例子学习python的基本库文件和基本的机器学习的算法。
1、unsupervised learning:in which the training data consists of a set of input vectors x without any corresponding target values. The goal in such problems may be to discover groups of similar examples within the data, where it is called clustering, or to determine the distribution of data within the input space, known as density estimation, or to project the data from a high-dimensional space down to two or three dimensions for the purpose of visualization
无监督学习的思路是建立在人类学习只有很少的标签样本。但是由于海马体的推演和联想能力,行程人类强大的自学能力。机器学习的目标也是建立在让机器自己学习能力增强的基础上,即在无标签样本中具备学习能力。聚类、密度估计和降维是三个场景。但是基本的流行的步骤还是少量的标签样本和大量的无标签样本。无标签样本来进行无监督逐层的特征学习,训练好分层的layer-wise网络再用少量的标签样本来fine-tuning。总体还是在需要labeled data的思路上。纯盲的自我学习(没有任何的target样本)还在探索。
图片的存储(二位)和MATLAB一样,8*8形式。1797张。
An example of an estimator is the classsklearn.svm.SVCthat implementssupport vector classification.
支持向量机(SVM)作为黑盒子,不具体讲解。
Confusion matrix:(pcolor 功能;colorbar)
这个矩阵在MATLAB化成图形就是: