值得观看数据结构和算法分析unity3D技术分享

数据结构之一对多,树(完结)

2016-11-21  本文已影响146人  Juinjonn

个人介绍及问题解决

树:

定义:一个树至多有一个根节点,每一个路径的终端都叫终端节点,也叫叶子结点。既不是根也不是叶子节点叫中间节点,节点与节点连接的线叫边。从底下往上看叫高度,从上往低看叫深度
PS:树整体高度和深度取最大值。
度:看当前节点有n个子节点就叫n度。

二叉树(Binary Tree)

定义:树里的每个节点至多允许有两个节点。

满二叉树

定义:每一层都是满节点(2个节点)除最后一层的二叉树。

完全二叉树

定义:只允许最后一层有空缺,且空缺的方式从右向左的二叉树。
ps:满二叉树是完全二叉树的一种特殊形势。

平衡二叉树

定义:树中任意节点,左右子树高度差不超过1。
ps:完全二叉树一定是平衡二叉树。

排序二叉树

定义:左孩子的值比父亲小,右节点的值比父节点的大。

二叉树的性质

  1. $i=1$时是根节点。
  2. $2i<=n $ ,$i$有左子树,否则没有。
  3. $2i+1<=n$时,$i$有右子树,否则没有。

二叉树的遍历

  1. 前序遍历:根左右
  2. 中序遍历:左根右
  3. 后序遍历:左右根
#include<stdio.h>
#include<stdlib.h>
typedef struct Node
{
    int nValue;
    struct Node *pLeft;
    struct Node *pRight;

}BinaryTree;
typedef struct node3
{
BinaryTree *nValue;
struct node3 *pNext;
}MyQueue;

typedef struct node4
{
int nCount;
MyQueue* pHead;
MyQueue *pTail;
}Queue;
BinaryTree * CreateTree();
void RecPreOrderTraversal(BinaryTree *pRoot)
{
    if(pRoot == NULL)return;
    //前序遍历 根左右
    printf("%d ",pRoot->nValue);
    RecPreOrderTraversal(pRoot->pLeft);
    RecPreOrderTraversal(pRoot->pRight);
}
void RecInOrderTraversal(BinaryTree *pRoot)
{
    if(pRoot == NULL)return;
    //中序遍历 左根右
    RecInOrderTraversal(pRoot->pLeft);
    printf("%d ",pRoot->nValue);
    RecInOrderTraversal(pRoot->pRight);
}
void RecLastOrderTraversal(BinaryTree *pRoot)
{
    if(pRoot == NULL)return;
    //后序遍历 左右根
    RecLastOrderTraversal(pRoot->pLeft);
    RecLastOrderTraversal(pRoot->pRight);
    printf("%d ",pRoot->nValue);
}
void q_Init(Queue **pQueue)
{
    if(pQueue == NULL)return;
    *pQueue = (Queue*)malloc(sizeof(Queue));
    (*pQueue)->nCount = 0;
    (*pQueue)->pHead = NULL;
    (*pQueue)->pTail = NULL;
}

void q_Push(Queue *pQueue,BinaryTree *nNum)
{
    MyQueue *pTemp = NULL;
    if(pQueue == NULL)return;

    pTemp = (MyQueue*)malloc(sizeof(MyQueue));
    pTemp->nValue = nNum;
    pTemp->pNext = NULL;

    if(pQueue->pHead == NULL)
    {
    pQueue->pHead = pTemp;
    }
    else
    {
    pQueue->pTail->pNext = pTemp;
    }

    pQueue->pTail = pTemp;
    pQueue->nCount++;

}
BinaryTree* q_Pop(Queue *pQueue)
{
    MyQueue *pDel = NULL;
    BinaryTree  *Temp = NULL;
    if(pQueue == NULL || pQueue->pHead == NULL)return NULL;

    pDel = pQueue->pHead;
    Temp = pDel->nValue;

    pQueue->pHead = pQueue->pHead->pNext;
    free(pDel);
    pDel = NULL;
    pQueue->nCount--;

    if(pQueue->nCount == 0)
    {
    pQueue->pTail = NULL;
    }

    return Temp;
}

int q_IsEmpty(Queue *pQueue)
{
    if(pQueue == NULL )return -1;
    return pQueue->nCount ? 0:1;
}
void EveryTravelsalTree(BinaryTree *Tree)
{
    //层序遍历
    Queue *M_Queue = NULL;
    BinaryTree *Temp = NULL;
    if(Tree == NULL)return;
    q_Init(&M_Queue);
    q_Push(M_Queue,Tree);
    while(!q_IsEmpty(M_Queue))
    {
        Temp = q_Pop(M_Queue);
        printf("%d ",Temp->nValue);
        if(Temp->pLeft != NULL)
        {
            q_Push(M_Queue,Temp->pLeft);
        }
        if (Temp->pRight != NULL)
        {
            q_Push(M_Queue,Temp->pRight);
        }   
    }
}

例二叉树

二叉树
前序:X Y F X R B K G D
中序:X B R Y Z F D G K
后序:X Y F Z R B K G D

二叉树的创建

手动创建二叉树,最慢最基础零技术的创建方法

#include<stdio.h>
#include<stdlib.h>
typedef struct Node
{
    int nValue;
    struct Node *pLeft;
    struct Node *pRight;

}BinaryTree;
BinaryTree * CreateTree()
{
    BinaryTree *pRoot = NULL;
    pRoot = (BinaryTree*)malloc(sizeof(BinaryTree));
    pRoot ->nValue = 1;
    //根的左2
    pRoot->pLeft = (BinaryTree*)malloc(sizeof(BinaryTree));
    pRoot->pLeft->nValue = 2;
    //左的左4
    pRoot->pLeft->pLeft = (BinaryTree*)malloc(sizeof(BinaryTree));
    pRoot->pLeft->pLeft->nValue = 4;
    pRoot->pLeft->pLeft->pLeft = NULL;
    pRoot->pLeft->pLeft->pRight = NULL;
    //左的右5
    pRoot->pLeft->pRight = (BinaryTree*)malloc(sizeof(BinaryTree));
    pRoot->pLeft->pRight->nValue = 5;
    pRoot->pLeft->pRight->pLeft = NULL;
    pRoot->pLeft->pRight->pRight = NULL;
    //根的右3
    pRoot->pRight = (BinaryTree*)malloc(sizeof(BinaryTree));
    pRoot->pRight->nValue = 3;
    pRoot->pRight->pRight = NULL;
    //右的左6
    pRoot->pRight->pLeft = (BinaryTree*)malloc(sizeof(BinaryTree));
    pRoot->pRight->pLeft->nValue = 6;
    pRoot->pRight->pLeft->pLeft = NULL;
    pRoot->pRight->pLeft->pRight = NULL;
    return pRoot;
}

递归创建二叉树(反序列创建二叉树)

根据层序遍历特点来创建二叉树

void DynamicRecPreOrder(BinaryTree **Temp)
{
    //前序动态创建二叉树,叫递归创建二叉树或者反序列化创建二叉树
    int j;
    scanf_s("%d",&j);   
    if(Temp==NULL)return;
    if(j == 0)return;
    *Temp = (BinaryTree*)malloc(sizeof(BinaryTree));
    (*Temp)->nValue = j;
    (*Temp)->pLeft = NULL;
    (*Temp)->pRight = NULL;
    DynamicRecPreOrder(&((*Temp)->pLeft));
    DynamicRecPreOrder(&((*Temp)->pRight));

    return;
}

动态创建二叉树(用数组的形势)

根据二叉树的性质5

BinaryTree *DynamicArryCreateTree(int Temp[],int Num)
{
    BinaryTree *Templ = NULL;
    int i = 0;
    int m = 0;
    Templ = (BinaryTree*)malloc(sizeof(BinaryTree)*Num);
    for(;i<Num;i++)
    {
        Templ[i].nValue = Temp[i];
        Templ[i].pLeft = NULL;
        Templ[i].pRight = NULL;
    }
    for (m = 0; m <= (Num/2) - 1 ; m++)
    {
        if(2*m+1<Num)
        {
        Templ[m].pLeft = &Templ[2*m+1];
        }
        if(2*m+2<Num)
        {
        Templ[m].pRight = &Templ[2*m+2];
        }
    }

        return Templ;
}

二叉树的循环高级遍历(非递归)

叙述流程

  1. 申请栈stack
  2. 检验参数
  3. (前序:打印节点)节点入栈
  4. 判断节点是否有左
    • 有,重复3 4
    • 没有,下一步(中序:打印节点)
  5. 栈顶弹出,弹出栈顶是否为空
    • 是,结束
    • 无,重复5
  6. 判断弹出节点是否有右
    • 有,把右变成当前节点,之后重复3 4
    • 无,重复5

用循环实现前序遍历

void OnRecTraversal(BinaryTree* Temp)
{
    Stack *m_Stack = NULL;
    if(Temp == NULL)return;
    s_Init(&m_Stack);
    while(1)
    {
        while (Temp)
        {
            printf("%d\n",Temp->nValue);
            s_Push(m_Stack,Temp);
            Temp = Temp->pLeft;
        }
        //栈顶弹出
        Temp = s_Pop(m_Stack);
        //判断节点是否为空
        if(Temp == NULL)return;
        //向右处理
        Temp = Temp->pRight;
    }
}

用循环实现中序遍历

void MidTraversal(BinaryTree* Temp)
{
    Stack *m_Stack = NULL;
    if(Temp == NULL)return;
    s_Init(&m_Stack);
    while(1)
    {
        while (Temp)
        {
            s_Push(m_Stack,Temp);
            Temp = Temp->pLeft;
        }
        //栈顶弹出
        Temp = s_Pop(m_Stack);
        //判断节点是否为空
        if(Temp == NULL)return;
        printf("%d\n",Temp->nValue);
        //向右处理
        Temp = Temp->pRight;
    }
}

用循环实现后序遍历

void RecLastOrderTraversal(BinaryTree* Temp)
{
    Stack *m_Stack = NULL;
    BinaryTree* pTemp = 0;
    if(Temp == NULL)return;
    s_Init(&m_Stack);
    while(1)
    {   
        while (Temp)
        {       
            s_Push(m_Stack,Temp);
            Temp = Temp->pLeft;
        }
        if(m_Stack->pTop == NULL)return;
        if(m_Stack->pTop->nValue->pRight == NULL||m_Stack->pTop->nValue->pRight == pTemp)
        {
            pTemp = s_Pop(m_Stack);
            printf("%d\n",pTemp->nValue);
        }else
        {
            Temp = m_Stack->pTop->nValue->pRight;
        }
    }
    return;
}

在二叉树中插入一个结点

首先先写一个查找的API

在一个二叉树中查找一个结点

BinaryTree * Chop(BinaryTree *pRoot,int nNum)
{
    Queue *pQueue = NULL;
    BinaryTree *pTemp = NULL;
    if(pRoot == NULL)return NULL;
    
    q_Init(&pQueue);

    //根入队
    q_Push(pQueue,pRoot);

    while(!q_IsEmpty(pQueue))
    {
        pTemp = q_Pop(pQueue);
        
        if(pTemp->nValue == nNum)
        {
            //记得清空队列
            return pTemp;
        }

        //左右非空入队
        if(pTemp->pLeft != NULL)
        {
            q_Push(pQueue,pTemp->pLeft);
        }
        if(pTemp->pRight != NULL)
        {
            q_Push(pQueue,pTemp->pRight);
        }
    }
    return NULL;
}

在一个二叉树中插入一个结点,传入方向,值

//传入树,放在那个节点的下面,放入得值,放入的方向
void InsertNode(BinaryTree **pRoot,int nNum,int nValue,int nDirection)
{
    BinaryTree *pNode = NULL;
    BinaryTree *pTemp = NULL;
    if(pRoot == NULL || *pRoot == NULL)return;

    //查找
    pNode = Chop(*pRoot,nNum);

    //检测
    //不存在
    if(pNode == NULL)
    {
        printf("值不存在~~~\n");
        return;
    }

    //存在
    pTemp = (BinaryTree*)malloc(sizeof(BinaryTree));
    pTemp->nValue = nValue;
    pTemp->pLeft = NULL;
    pTemp->pRight = NULL;

    //被插入方向
    if(nDirection == LEFT)
    {
        pTemp->pLeft = pNode->pLeft;
        pNode->pLeft = pTemp;
        return;
    }
    if(nDirection == RIGHT)
    {
        pTemp->pRight = pNode->pRight;
        pNode->pRight = pTemp;
        return;
    }
}

创建一个排序二叉树

创建流程

  1. 将值放入结点
  2. 检测树是否为空树,若是空结点,则新结点即为根,结束
  3. 若树为非空树
    比较结点值大小
    若值比结点值大,则向右子树方向走

若值比结点值小,则向左子树方向走

值相同的话,违背排序二叉树的步骤,释放新建结点空间,结束

void InsertNode(BinaryTree **pRoot,int nNum)
{
    BinaryTree *pTemp = NULL;
    BinaryTree *pMark = NULL;

    if(pRoot == NULL)return;

    pTemp = (BinaryTree*)malloc(sizeof(BinaryTree));
    pTemp->nValue = nNum;
    pTemp->pLeft = NULL;
    pTemp->pRight = NULL;

    //空树
    if(*pRoot == NULL)
    {
        *pRoot = pTemp;
        return;
    }

    //标记根
    pMark = *pRoot;

    while(1)
    {
        //新来的节点值小
        if(nNum < pMark->nValue)
        {
            //左空
            if(pMark->pLeft == NULL)
            {
                pMark->pLeft = pTemp;
                return;
            }

            //非空 向左走
            pMark = pMark->pLeft;
        }
        //新来的节点值大
        else if(nNum > pMark->nValue)
        {
            //右空
            if(pMark->pRight == NULL)
            {
                pMark->pRight = pTemp;
                return;
            }

            //非空 向右走
            pMark = pMark->pRight;
        }

        //新来值已经存在  违背性质  结束
        else
        {
            free(pTemp);
            pTemp = NULL;
            return;
        }
    }
}


BinaryTree *CreateSrtTree(int arr[],int nLength)
{
    BinaryTree *pRoot = NULL;
    int i;
    if(arr == NULL || nLength <=0)return NULL;

    for(i = 0;i<nLength;i++)
    {
        InsertNode(&pRoot,arr[i]);
    }
    return pRoot;
}

从排序二叉树中删除一个结点

删除的流程

  1. 叶子节点,直接删除
  2. 有一个孩子(即只有一个左子树或者右子树),删除当前结点,用孩子代替它
  3. 有两个孩子,找到其右的最左或者左的最右的结点,将找到的结点的值覆盖删除结点的值,之后进行步骤1,2

在一个排序二叉树查找一个结点的代码

//参数:树,被查找的值,被删除节点的地址,被删除节点的父亲
void Search(BinaryTree *pTree,int nNum,BinaryTree **pDel,BinaryTree **pDelFather)
{
    if(pTree == NULL)return;

    while(pTree)
    {
        //找到  记住被删除位置 结束
        if(pTree->nValue == nNum)
        {
            *pDel = pTree;
            return;
        }

        //查找的值比当前节点的小 记住被删除节点的父亲 而后向左走
        else if(pTree->nValue > nNum)
        {
            *pDelFather = pTree;
            pTree = pTree->pLeft;
        }
        //查找的值比当前节点的大 记住被删除节点的父亲 而后向右走
        else
        {
            *pDelFather = pTree;
            pTree = pTree->pRight;
        }
    }

    //查找结束 没找到 清空标记删除节点父亲的指针
    *pDelFather = NULL;
    return ;
}

在排序二叉树删除一个节点代码

void DelOneChild(BinaryTree **pRoot, BinaryTree *pDel,BinaryTree *pDelFather)
{
    if(pRoot == NULL)return;

    //被删除节点是根
    if(pDelFather == NULL)
    {
        *pRoot = pDel->pLeft ? pDel->pLeft:pDel->pRight;
        free(pDel);
        pDel = NULL;
        
        return;
    }

    //检测被删除节点是父亲的左还是右
    if(pDel == pDelFather->pLeft)
    {
        //将被删除节点非空的孩子与pdelfather关联 
        pDelFather->pLeft = pDel->pLeft ? pDel->pLeft:pDel->pRight;
        free(pDel);
        pDel = NULL;
        return;
    }
    if(pDel == pDelFather->pRight)
    {
        pDelFather->pRight = pDel->pLeft ? pDel->pLeft:pDel->pRight;
        free(pDel);
        pDel = NULL;
        return;
    }

}

void DelNode(BinaryTree **pTree,int nNum)
{
    BinaryTree *pDel = NULL;
    BinaryTree *pDelFather = NULL;
    BinaryTree *pMark =NULL;
    if(pTree == NULL || *pTree == NULL)return;

    //查找
    Search(*pTree,nNum,&pDel,&pDelFather);

    //没找到
    if(pDel == NULL)return;

    //找到
    //有两个孩子 向右找最小的
    if(pDel->pLeft!= NULL && pDel->pRight != NULL)
    {
        pMark = pDel;

        //移动到右
        pDelFather = pDel;
        pDel = pDel->pRight;

        //找右的最左
        while(pDel->pLeft)
        {
            pDelFather = pDel;
            pDel = pDel->pLeft;
        }

        //值覆盖
        pMark->nValue = pDel->nValue;
    }

    //删除有一个孩子的或者没孩子的
    DelOneChild(pTree,pDel,pDelFather);

}

排序二叉树转换成一个排序双向链表

流程

  1. 根据中序遍历特点,左根右
  2. 将二叉树左看成链表的上指针,将二叉树的右看链表的下指针.
  3. 在中序遍历输出的位置,将二叉树变成链表式连接

代码

void SortTreeToList(BinaryTree *pRoot, BinaryTree **pHead,BinaryTree **pTail)
{
    if(pRoot == NULL)return;
    if(pHead == NULL || pTail == NULL)return;

    //找到左侧
    SortTreeToList(pRoot->pLeft,pHead,pTail);

    //尾添加节点
    if(*pHead == NULL)
    {
        *pHead = pRoot;
    }
    else
    {
        //双向指向关联
        //left = 上一个pre
        //right = 下一个next
        (*pTail)->pRight = pRoot;
        pRoot->pLeft = *pTail;
    }
    *pTail = pRoot;

    //找到右侧
    SortTreeToList(pRoot->pRight,pHead,pTail);
}

平衡二叉树的两种旋转

普通二叉树深度:后序遍历查栈里元素的个数

将差一步的平衡二叉树变成平衡二叉树

右旋

在原有的二叉树里,添加一个父亲的指针
在左子树的左子树添加一个结点F,进行右旋
A交支点长的一边B - D - F掰下来


右旋

两个步骤:
记:A->pLeft = pMark
先处理儿子:

左旋

与右旋相反

创建一个不平衡二叉树

void CreateBiTree(BinaryTree **root)
{
    if(root == NULL)return;
    (*root) = (BinaryTree*)malloc(sizeof(BinaryTree));
    (*root)->nValue = 1;
    (*root)->pFather = NULL;

    //左子树
    (*root)->pLeft = (BinaryTree*)malloc(sizeof(BinaryTree));
    (*root)->pLeft->nValue = 2;
    (*root)->pLeft->pFather = *root;

    //右子树
    (*root)->pRight = NULL;

    //左的左
    (*root)->pLeft->pLeft = (BinaryTree*)malloc(sizeof(BinaryTree));
    (*root)->pLeft->pLeft->nValue = 3;
    (*root)->pLeft->pLeft->pFather = (*root)->pLeft;

    //左的左的左
    (*root)->pLeft->pLeft->pLeft = (BinaryTree*)malloc(sizeof(BinaryTree));
    (*root)->pLeft->pLeft->pLeft->nValue = 5;
    (*root)->pLeft->pLeft->pLeft->pFather = (*root)->pLeft->pLeft;
    (*root)->pLeft->pLeft->pLeft->pLeft = NULL;
    (*root)->pLeft->pLeft->pLeft->pRight = NULL;

    //左的左的右
    (*root)->pLeft->pLeft->pRight = (BinaryTree*)malloc(sizeof(BinaryTree));
    (*root)->pLeft->pLeft->pRight ->nValue = 6;
    (*root)->pLeft->pLeft->pRight ->pFather = (*root)->pLeft->pLeft;
    (*root)->pLeft->pLeft->pRight ->pLeft = NULL;
    (*root)->pLeft->pLeft->pRight ->pRight = NULL;

    //左的右
    (*root)->pLeft->pRight = (BinaryTree*)malloc(sizeof(BinaryTree));
    (*root)->pLeft->pRight->nValue = 4;
    (*root)->pLeft->pRight->pFather = (*root)->pLeft;
    (*root)->pLeft->pRight->pLeft = NULL;
    (*root)->pLeft->pRight->pRight = NULL;
}

右旋,左旋代码

void RightRotate(BinaryTree **pTree)
{
    BinaryTree *pMark = NULL;

    if(pTree == NULL)return;

    //右旋标记左侧
    pMark = (*pTree)->pLeft;

    //处理儿子关系
    (*pTree)->pLeft = pMark->pRight;
    pMark->pRight = *pTree;

    //支点父亲是否存在
    if((*pTree)->pFather != NULL)
    {
        //将支点的左和支点的父亲关联起来
        ((*pTree)->pFather->pLeft == *pTree)?((*pTree)->pFather->pLeft  = pMark):((*pTree)->pFather->pRight= pMark);
    }

    //关联父亲
    //支点的左是否存在
    if((*pTree)->pLeft != NULL)
    {
        (*pTree)->pLeft->pFather = *pTree;
    }

    pMark->pFather = (*pTree)->pFather;
    (*pTree)->pFather = pMark;

    //支点是根节点 旋转之后根节点更改
    if(pMark->pFather == NULL)
    {
        *pTree = pMark;
    }
}

void LeftRotate(BinaryTree **pTree)
{
    BinaryTree *pMark = NULL;

    if(pTree == NULL)return;

    //右旋标记左侧
    pMark = (*pTree)->pRight;

    //处理儿子关系
    (*pTree)->pRight = pMark->pLeft;
    pMark->pLeft = *pTree;

    //支点父亲是否存在
    if((*pTree)->pFather != NULL)
    {
        //将支点的左和支点的父亲关联起来
        ((*pTree)->pFather->pLeft == *pTree)?((*pTree)->pFather->pLeft  = pMark):((*pTree)->pFather->pRight= pMark);
    }

    //关联父亲
    //支点的左是否存在
    if((*pTree)->pRight != NULL)
    {
        (*pTree)->pRight->pFather = *pTree;
    }

    pMark->pFather = (*pTree)->pFather;
    (*pTree)->pFather = pMark;

    //支点是根节点 旋转之后根节点更改
    if(pMark->pFather == NULL)
    {
        *pTree = pMark;
    }
}
上一篇 下一篇

猜你喜欢

热点阅读