21.opengl高级-几何着色器
2020-07-12 本文已影响0人
天叔
留个tudo:法向量变换矩阵,抽时间研究下,在光照那几章节里有提到
一、几何着色器的原理
几何着色器可以在顶点发送到着色器之前随意变换。可以这么理解:顶点着色器是接收属性,一般不做过多处理,保持原数据,算是第一层接口层;片元着色器一般处理color;如果想做些特殊处理,通过在中间加一层几何着色器把流程拆碎,分工更细致,达到工程代码高内聚低耦合,拓展性更合理。涉及的知识点不多,下面直接通过实例来说明几何着色器的使用原理
二、简单demo:绘制四个房子
![]() |
![]() |
---|
1. 修改shader代码,支持添加几何着色器,下面代码仅贴出新增几何着色器部分代码
class Shader
{
...
...
Shader( char* vertexPath, const char* fragmentPath, const char* geometryPath = nullptr)
{
...
std::string geometryCode;
std::ifstream gShaderFile;
// ensure ifstream objects can throw exceptions:
gShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
try
{
// open files
...
if (geometryPath != nullptr)
{
gShaderFile.open(geometryPath);
std::stringstream gShaderStream;
gShaderStream << gShaderFile.rdbuf();
gShaderFile.close();
geometryCode = gShaderStream.str();
}
}
catch (std::ifstream::failure& e)
{
std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ" << std::endl;
}
// 2. compile shaders
...
// if geometry shader is given, compile geometry shader
unsigned int geometry;
if (geometryPath != nullptr)
{
const char * gShaderCode = geometryCode.c_str();
geometry = glCreateShader(GL_GEOMETRY_SHADER);
glShaderSource(geometry, 1, &gShaderCode, NULL);
glCompileShader(geometry);
checkCompileErrors(geometry, "GEOMETRY");
}
...
if (geometryPath != nullptr)
{
glDeleteShader(geometry);
}
}
2. 主程序中添加顶点数据,shader初始化添加几何着色器参数
顶点数据,在屏幕上添加4个顶点,稍后几何着色器会从这个四个点演变出四个房子形状
// shader初始化
Shader shader("1.colors.vs", "1.colors.fs", "1.geometry_shader.gs");
// 顶点数据
float points[] = {
-0.5f, 0.5f, 1.0f, 0.0f, 0.0f, // top-left
0.5f, 0.5f, 0.0f, 1.0f, 0.0f, // top-right
0.5f, -0.5f, 0.0f, 0.0f, 1.0f, // bottom-right
-0.5f, -0.5f, 1.0f, 1.0f, 0.0f // bottom-left
};
// 绘制的逻辑非常简单,一看就明白
unsigned int VBO, VAO;
glGenBuffers(1, &VBO);
glGenVertexArrays(1, &VAO);
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(points), &points, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), 0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(2 * sizeof(float)));
glBindVertexArray(0);
3. 顶点着色器
顶点着色器基本没干啥,透传数据。定义颜色输出数组,这里也可以用普通的数组定义 out vec3 color[],原教程中用数据块来定义,是想教读者养成良好的编码习惯,毕竟实际工程中要传递大量的数据,用数据块更合适
#version 330 core
// 接收顶点
layout (location = 0) in vec3 aPos;
// 接收颜色
layout (location = 1) in vec3 aColor;
// 定义颜色输出数组,这里也可以用普通的数组定义 out vec3 color[],原教程中用数据块来定义,是想教读者养成良好的编码习惯,毕竟实际工程中要传递大量的数据,用数据块更合适
out VS_OUT {
vec3 color;
} vs_out;
void main()
{
// 输出颜色
vs_out.color = aColor;
// 输出位置
gl_Position = vec4(aPos.x, aPos.y, 0.0, 1.0);
}
4. 定义几何着色器,直接看代码
定义输出三角形,会按照输出的顶点,自己组织三角形,相邻三角形共用两个顶点
layout (triangle_strip, max_vertices = 5) out; 一个房子需要5个顶点,所以max_vertices = 5,写6估计也没关系
#version 330 core
layout (points) in;
// 定义输出三角形,会按照输出的顶点,自己组织三角形,相邻三角形共用两个顶点
layout (triangle_strip, max_vertices = 5) out;
in VS_OUT {
vec3 color;
} gs_in[];
out vec3 fColor;
void build_house(vec4 position)
{
// 定义1-4的顶点
fColor = gs_in[0].color; // gs_in[0] since there's only one input vertex
gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0); // 1:bottom_left
EmitVertex();
gl_Position = position + vec4(0.2, -0.2, 0.0, 0.0); // 2: bottom-right
EmitVertex();
gl_Position = position + vec4(-0.2, 0.2, 0.0, 0.0); // 3:top-left
EmitVertex();
gl_Position = position + vec4(0.2, 0.2, 0.0, 0.0); // 4:top-right
EmitVertex();
// 定义第五个顶点,第五个顶点是房顶,房顶是白色的
// 房顶颜色定义为vec3(1.0, 1.0, 1.0) 即白色
gl_Position = position + vec4(0.0, 0.4, 0.0, 0.0); // 5:top
fColor = vec3(1.0, 1.0, 1.0);
EmitVertex();
EndPrimitive();
}
void main()
{
// 做简单的封装
build_house(gl_in[0].gl_Position);
}
5. 定义片元着色器,so easy,没有特殊处理,最基本的输出
#version 330 core
out vec4 FragColor;
in vec3 fColor;
void main()
{
FragColor = vec4(fColor, 1.0);
}
打开线条绘制看效果
glPolygonMode(GL_FRONT_AND_BACK ,GL_LINE );

三、复杂demo1-3D模型爆炸

1. 着色器
顶点着色器
// 顶点着色器加上相机变换
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoords;
out VS_OUT {
vec2 texCoords;
} vs_out;
uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;
void main()
{
vs_out.texCoords = aTexCoords;
gl_Position = projection * view * model * vec4(aPos, 1.0);
}
片段着色器无变化
#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
uniform sampler2D texture_diffuse1;
void main()
{
FragColor = texture(texture_diffuse1, TexCoords);
}
几何着色器稍微复杂点,有几点需要注意
爆炸的方向沿着三角形向外,则顶点沿着法线向外移动(此处感悟,2D的变化特效基本用不着对顶点特殊处理,仅通过片段着色器就够用了),通过sin函数实现一个平滑的爆炸,如果能实现一个加速效果会更好些。
法线通过两个平行于平面的向量叉乘来计算,注意叉乘的顺序,参考叉乘右手定则,A X B则四个手指紧握的方向从A转向B,大拇指指向法线方向:向量叉乘右手定则
#version 330 core
layout (triangles) in;
layout (triangle_strip, max_vertices = 3) out;
in VS_OUT {
vec2 texCoords;
} gs_in[];
out vec2 TexCoords;
uniform float time;
vec4 explode(vec4 position, vec3 normal)
{
float magnitude = 2.0;
vec3 direction = normal * ((sin(time) + 1.0) / 2.0) * magnitude;
return position + vec4(direction, 0.0);
}
// 法线计算,方向朝外
vec3 GetNormal()
{
vec3 a = vec3 (gl_in[0].gl_Position) - vec3(gl_in[1].gl_Position);
vec3 b = vec3 (gl_in[2].gl_Position) - vec3(gl_in[1].gl_Position);
return normalize(cross(a, b));
}
void main()
{
vec3 normal = GetNormal();
// gl_in是内置的变量,上面声明的是三角形,gl_in有三个值
gl_Position = explode(gl_in[0].gl_Position, normal);
TexCoords = gs_in[0].texCoords;
EmitVertex();
gl_Position = explode(gl_in[1].gl_Position, normal);
TexCoords = gs_in[1].texCoords;
EmitVertex();
gl_Position = explode(gl_in[2].gl_Position, normal);
TexCoords = gs_in[2].texCoords;
EmitVertex();
EndPrimitive();
}
2. 主程序
主程序代码不复杂,使用封装好的Model类加载模型,加上相机变换
...
Shader shader("1.colors.vs", "1.colors.fs", "1.geometry_shader.gs");
...
Model nanosuit("pack/backpack.obj");
...
glm::mat4 projection = glm::perspective(glm::radians(45.0f),(float)SCR_WIDTH / (float)SCR_HEIGHT, 1.0f, 100.0f);
glm::mat4 view = camera.GetViewMatrix();
glm::mat4 model = glm::mat4(1.0f);
shader.use();
shader.setMat4("projection", projection);
shader.setMat4("view", view);
shader.setMat4("model", model);
shader.setFloat("time", glfwGetTime());
nanosuit.Draw(shader);
四、复杂demo2-法向量可视化
显示法向量可以用来辅助定位光照中的错误
实现步骤:1)绘制3D模型;2)根据顶点计算法向量传递到几何着色器;3)片段着色器中设置输出颜色为黄色
这里图省事,只绘制法向量,没有绘制模型,基于上面的代码,简单调整三个着色器代码即可实现
顶点着色器
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
out VS_OUT {
vec3 normal;
} vs_out;
uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;
void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
mat3 normalMatrix = mat3(transpose(inverse(view * model)));
vs_out.normal = normalize(vec3(projection * vec4(normalMatrix * aNormal, 0.0)));
}
几何着色器
#version 330 core
layout (triangles) in;
layout (line_strip, max_vertices = 6) out;
in VS_OUT {
vec3 normal;
} gs_in[];
const float MAGNITUDE = 0.4;
void GenerateLine(int index)
{
gl_Position = gl_in[index].gl_Position;
EmitVertex();
gl_Position = gl_in[index].gl_Position + vec4(gs_in[index].normal, 0.0) * MAGNITUDE;
EmitVertex();
EndPrimitive();
}
void main()
{
GenerateLine(0); // 第一个顶点法线
GenerateLine(1); // 第二个顶点法线
GenerateLine(2); // 第三个顶点法线
}
片段着色器
#version 330 core
out vec4 FragColor;
void main()
{
FragColor = vec4(1.0, 1.0, 0.0, 1.0);
}

五、完整代码
1. 3d模型爆炸主程序完整代码
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include "Shader.h"
#include "camera.h"
#include "model.h"
#include <iostream>
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);
unsigned int loadTexture(const char *path);
unsigned int loadCubemap(vector<std::string> faces);
// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;
// camera
Camera camera(glm::vec3(0.0f, 0.5f, 30.0f));
float lastX = (float)SCR_WIDTH / 2.0;
float lastY = (float)SCR_HEIGHT / 2.0;
bool firstMouse = true;
// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;
int main()
{
// glfw: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// glfw window creation
// --------------------
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "天哥学opengl", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
// tell GLFW to capture our mouse
// glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// glad: load all OpenGL function pointers
// ---------------------------------------
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Failed to initialize GLAD" << std::endl;
return -1;
}
// glPolygonMode(GL_FRONT_AND_BACK ,GL_LINE );
// configure global opengl state
// -----------------------------
glEnable(GL_DEPTH_TEST);
// build and compile shaders
// -------------------------
Shader shader("1.colors.vs", "1.colors.fs", "1.geometry_shader.gs");
// set up vertex data (and buffer(s)) and configure vertex attributes
// ------------------------------------------------------------------
Model nanosuit("pack/backpack.obj");
// render loop
// -----------
while (!glfwWindowShouldClose(window))
{
float currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
processInput(window);
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glm::mat4 projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH / (float)SCR_HEIGHT, 1.0f, 100.0f);
glm::mat4 view = camera.GetViewMatrix();
glm::mat4 model = glm::mat4(1.0f);
shader.use();
shader.setMat4("projection", projection);
shader.setMat4("view", view);
shader.setMat4("model", model);
shader.setFloat("time", glfwGetTime());
nanosuit.Draw(shader);
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
// -------------------------------------------------------------------------------
glfwSwapBuffers(window);
glfwPollEvents();
}
// optional: de-allocate all resources once they've outlived their purpose:
// ------------------------------------------------------------------------
glfwTerminate();
return 0;
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
bool startRecord = false;
void processInput(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_Y))
{
std::cout << "Y" << std::endl;
startRecord = true;
}
if (glfwGetKey(window, GLFW_KEY_N))
{
std::cout << "N" << std::endl;
startRecord = false;
}
if (startRecord) {
return;
}
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
camera.ProcessKeyboard(FORWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
camera.ProcessKeyboard(LEFT, deltaTime);
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
camera.ProcessKeyboard(RIGHT, deltaTime);
}
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
// make sure the viewport matches the new window dimensions; note that width and
// height will be significantly larger than specified on retina displays.
glViewport(0, 0, width, height);
}
// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
// std::cout << "xpos : " << xpos << std::endl;
// std::cout << "ypos : " << ypos << std::endl;
if (startRecord) {
return;
}
if (firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
float xoffset = xpos - lastX;
float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top
lastX = xpos;
lastY = ypos;
// std::cout << "xoffset : " << xoffset << std::endl;
// std::cout << "yoffset : " << yoffset << std::endl;
camera.ProcessMouseMovement(xoffset, yoffset);
}
// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(yoffset);
}
// utility function for loading a 2D texture from file
// ---------------------------------------------------
unsigned int loadTexture(char const * path)
{
unsigned int textureID;
glGenTextures(1, &textureID);
int width, height, nrComponents;
unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
if (data)
{
GLenum format;
if (nrComponents == 1)
format = GL_RED;
else if (nrComponents == 3)
format = GL_RGB;
else if (nrComponents == 4)
format = GL_RGBA;
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
std::cout << "Texture failed to load at path: " << path << std::endl;
stbi_image_free(data);
}
return textureID;
}
unsigned int loadCubemap(vector<std::string> faces)
{
unsigned int textureID;
glGenTextures(1, &textureID);
glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);
int width, height, nrChannels;
for (unsigned int i = 0; i < faces.size(); i++) {
unsigned char *data = stbi_load(faces[i].c_str(), &width, &height, &nrChannels, 0);
if (data)
{
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
stbi_image_free(data);
}
else
{
std::cout << "Cubemap texture failed to load at path: " << faces[i] << std::endl;
stbi_image_free(data);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
}
return textureID;
}