最优化问题03|等式约束
2018-12-11 本文已影响19人
5a41eb2ceec6
施加约束的目的是对所讨论的最优化问题中存在的某些限制因素给出合理的认识。
一、求稳定值
(一)拉格朗日乘数法
![](https://img.haomeiwen.com/i11013023/40b68a4a8ee1aba0.png)
![](https://img.haomeiwen.com/i11013023/729e35f557aca95a.png)
![](https://img.haomeiwen.com/i11013023/d366d020730f1be2.png)
![](https://img.haomeiwen.com/i11013023/ed8000bf82795400.png)
(二)全微分法
![](https://img.haomeiwen.com/i11013023/c28cf3403553f6cc.png)
将其与约束条件g(x,y)=c构成了两个方程,由此可以求出x和y的临界值。
(三)拉格朗日乘数的解释
λ是度量稳定值Z对约束条件变化的敏感性。
我们对一阶条件(12. 8) 进行比较静态分析。因为λ、x、y 均为内生变量,唯一合适的外生变量是约束参数 c。参数 c 的变化将导致 xy 平面中约束曲线的移动,从而使最优解改变。特别地,c 增加(预算增加或生产配额增加)的影响表明约束条件的放宽如何影响最优解。
![](https://img.haomeiwen.com/i11013023/4cc7d605ed059488.png)
![](https://img.haomeiwen.com/i11013023/8aa2af76f153cb6f.png)
![](https://img.haomeiwen.com/i11013023/4089d2e017bd5715.png)
![](https://img.haomeiwen.com/i11013023/66033fcc57c2780c.png)
需要注意的是,(12.7)中的最后一项应写成λ[c-g(x,y)],而不是λ[g(x,y)-c]
二、二阶条件
(一)二阶全微分
![](https://img.haomeiwen.com/i11013023/4bb63ccb1569576c.png)
![](https://img.haomeiwen.com/i11013023/00e8a4209665926e.png)
![](https://img.haomeiwen.com/i11013023/a67891a96ceefa49.png)
![](https://img.haomeiwen.com/i11013023/06ba821840a6cb1a.png)
(二)二阶条件
![](https://img.haomeiwen.com/i11013023/58a02e80f2175f00.png)
海塞加边行列式
![](https://img.haomeiwen.com/i11013023/c4d3a5d9729190c0.png)
![](https://img.haomeiwen.com/i11013023/e885ae0853d2298d.png)
应用
![](https://img.haomeiwen.com/i11013023/8deb4529019c536e.png)
![](https://img.haomeiwen.com/i11013023/2eea83ba517e92bc.png)