模拟梯度下降

2019-12-15  本文已影响0人  dacaqaa

模拟实现梯度下降
1.1 损失函数可视化

首先构造一个损失函数 image.png ,然后创建在-1到6的范围内构建140个点,并且求出对应的损失函数值,这样就可以画出损失函数的图形。
import numpy as np
import matplotlib.pyplot as plt
plot_x = np.linspace(-1,6,141)#np.linspace主要用来创建等差数列。
plot_x
plot_y = (plot_x -2.5)**2-1
plt.plot(plot_x,plot_y)
plt.show()
输出 image.png

定义损失函数与求导

def dJ(theta):
    return 2*(theta-2.5)
def J(theta):
    return (theta-2.5)**2-1.

寻找最佳参数

eta = 0.1 #学习率
epsilon = 1e-8

theta = 0.0
while True:
    gradient = dJ(theta)
    last_theta = theta
    theta = theta - eta*gradient
    
    if(abs(J(theta)-J(last_theta))<epsilon):
        break
        
print(theta)
print(J(theta))

模拟梯度下降

theta = 0.0
theta_history = [theta]
while True:
    gradient = dJ(theta)
    last_theta = theta
    theta = theta - eta*gradient
    theta_history.append(theta)
    
    if(abs(J(theta)-J(last_theta))<epsilon):
        break

def plot_theta_history():      
    plt.plot(plot_x,J(plot_x))
    plt.plot(np.array(theta_history),J(np.array(theta_history)),color='r',marker='+')
    plt.show()

plot_theta_history()

输出


image.png

查看生成了多少个theta

len(theta_history)

输出:46
减小学习率

theta = 0.0
theta_history = [theta]

def gradient_descent(initial_theta,eta,n_iters = 1e4,epilon=1e-8):
    theta = initial_theta
    theta_history.append(initial_theta)
    #i_iter = 0
    
    #while i_iter < n_iters:
    while True:
        gradient = dJ(theta)
        last_theta = theta
        theta = theta - eta*gradient
        theta_history.append(theta)
    
        if(abs(J(theta)-J(last_theta))<epsilon):
            break
        
       # i_iter += 1

def plot_theta_history():      
    plt.plot(plot_x,J(plot_x))
    plt.plot(np.array(theta_history),J(np.array(theta_history)),color='r',marker='+')
    plt.show()

eta = 0.01
tehta_history = []
gradient_descent(0.,eta)
plot_theta_history()

查看生成了多少个theta

len(theta_history)

输出:425
再次降低学习率

eta = 0.001
tehta_history = []
gradient_descent(0.,eta)
plot_theta_history()

输出


image.png

查看生成了多少个theta

len(theta_history)

输出:4107
尝试增大学习率

eta = 0.8
tehta_history = []
gradient_descent(-0.,eta)
plot_theta_history()

输出


image.png

发现最后找到了合适的theta,即eta=0.8在可供使用的学习率范围内。
再次尝试增大学习率

eta = 1.1
tehta_history = []
gradient_descent(0.,eta)
plot_theta_history()

发现报错,提示OverflowError: (34, 'Result too large')
查看产生了多少个参数

len(theta_history)

输出:141

theta_history[-1]

发现theta超出了给定的范围,学习率过大导致函数不收敛
为了避免报错,可以对原代码进行改进:
在计算损失函数值时捕获一场

def J(theta):
    try:
        return (theta-2.5)**2-1.
    except:
        return float('inf') #inf 浮点数的最大值

设定条件,结束死循环

def gradient_descent(initial_theta,eta,n_iters = 1e4,epsilon=1e-8):
    theta = initial_theta
    theta_history.append(initial_theta)
    i_iter = 0
    
    while i_iter < n_iters:
        gradient = dJ(theta)
        last_theta = theta
        theta = theta - eta*gradient
        theta_history.append(theta)
    
        if(abs(J(theta)-J(last_theta))<epsilon):
            break
        
        i_iter += 1

def plot_theta_history():      
    plt.plot(plot_x,J(plot_x))
    
def plot_theta_history():      
    plt.plot(plot_x,J(plot_x))      plt.plot(np.array(theta_history),J(np.array(theta_history)),color='r',marker='+')
    plt.show()
eta = 1.1
theta_history = []
gradient_descent(0,eta)
len(theta_history)

输出:10001

theta_history[-1]

输出:NaN

eta = 1.1
theta_history = []
gradient_descent(0.,eta,n_iters=10)
plot_theta_history()

输出:


image.png
上一篇 下一篇

猜你喜欢

热点阅读