抛物线及圆曲定值问题

2019-11-24  本文已影响0人  洛玖言

抛物线

定义:到一定点与到一定直线的距离相等的点的轨迹.

标准方程:y^2=2px\;(p>0)
焦点:F(\dfrac{p}{2},0)
准线:x=-\dfrac{p}{2}

|PF|=\dfrac{p}{2}+x_{1}

过焦点弦长 |CD|=x_1+\dfrac{p}{2}+x_2+\dfrac{p}{2}=x_1+x_2+p.

焦点弦长最短为通径,长为 2p

抛物线切线方程:y_0y=p(x+x_0).

过抛物外 y^2=2px 外一点 P(x_0,y_0) 所引两条切线的切点弦方程是 y_0y=p(x+x_0).

抛物线 y^2=2px\;(p>0)与直线 Ax+By+C=0 相切的条件是 pB^2=2AC


例1

过点 M(p,0) 任作直线交抛物线 y^2=2px\;(p>0)P、Q 两点,则 \dfrac{1}{|MP|^2}+\dfrac{1}{|MQ|^2} 的值为______.

Sol:

设直线 l: x=p+my 两交点分别为 P(x_1,y_1)、Q(x_2,y_2)
\begin{cases} x=p+my\\ y^2=2px \end{cases} \Rightarrow y^2-2pmy-2p^2=0

由韦达定理有
\begin{cases} y_1+y_2=2pm\\ y_1y_2=-2p^2\\ \end{cases}

|MP|=\sqrt{(x_1-p)^2+y_1^2}=|y_1|\sqrt{1+m^2}
|MQ|=\sqrt{(x_2-p)^2+y_2^2}=|y_2|\sqrt{1+m^2}

\begin{aligned} &\dfrac{1}{|MP|^2}+\dfrac{1}{|MQ|^2}\\ =&\dfrac{1}{(1+m^2)y_1^2}+\dfrac{1}{(1+m^2)y_2^2}\\ =&\dfrac{1}{1+m^2}\cdot\dfrac{y_1^2+y_2^2}{y_1^2y_2^2}=\dfrac{1}{1+m^2}\cdot\dfrac{y_1^2+y_2^2+2y_1y_2-2y_1y_2}{y_1^2y_2^2}\\ =&\dfrac{1}{1+m^2}\cdot\dfrac{(y_1+y_2)^2-2y_1y_2}{y_1^2y_2^2} \end{aligned}

把韦达定理带入得

\begin{aligned} &\dfrac{1}{|MP|^2}+\dfrac{1}{|MQ|^2}\\ =&\dfrac{1}{1+m^2}\cdot\dfrac{4p^2m^2+4p^2}{p^4}\\ =&\dfrac{1}{p^2} \end{aligned}


Sol2:

取特值,当取直线 x=p 时,得
P(p,\sqrt{2}p)、Q(p,-\sqrt{2}p)
\dfrac{1}{|MP|^2}+\dfrac{1}{|MQ|^2}=\dfrac{1}{2p^2}+\dfrac{1}{2p^2}=\dfrac{1}{p^2}


例2

在椭圆 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 上两点 A、B 于中心 O 的连线相互垂直,则 \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2} 的值为______.

Sol:

OA 所在的直线为 l_1:y=kx\,(k\not=0)
易知得 OB 所在的直线为 l_2:y=-\dfrac{1}{k}x
A(x_1,y_1)、B(x_2,y_2)
\begin{cases} y=kx\\ \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\\ \end{cases}\Rightarrow(a^2k^2+b^2)x^2=a^2b^2

\because A 为直线 l_1 与椭圆的交点
\thereforex_1=\dfrac{a^2b^2}{a^2k^2+b^2}
同理有
x_2=\dfrac{a^2b^2k^2}{a^2+b^2k^2}
\therefore|OA|=\sqrt{x_1^2+y_1^2}=\sqrt{1+k^2}|x_1|
|OB|=\sqrt{1+k^2}\dfrac{|x_2|}{|k|}
\begin{aligned} \therefore&\dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}\\ =&\dfrac{a^2k^2+b^2}{(1+k^2)a^2b^2}+\dfrac{k^2(a^2+b^2k^2)}{(1+k^1)(a^2b^2k^2)}\\ =&\dfrac{1}{a^2}+\dfrac{1}{b^2} \end{aligned}

l_1x 轴或 y 轴重合时,易知 \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}=\dfrac{1}{a^2}+\dfrac{1}{b^2}

Sol2:

取特殊情况:
l_1x 轴重合时,易知 \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}=\dfrac{1}{a^2}+\dfrac{1}{b^2}


例3

椭圆方程 \dfrac{x^2}{3}+\dfrac{2y^2}{3}=1, 过原点的直线 l 与椭圆 C 交于 A、B 两点,椭圆 C 上一点满足 |MA|=|MB|,求证 \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}+\dfrac{2}{|OM|^2} 为定值.

Sol:

AB 所在直线 l_1x 轴重合时,
易知 A、B 为左右顶点 |OA|=|OB|=\sqrt{3}
M 为上顶点或下顶点,有 |OM|=\dfrac{\sqrt{6}}{2}
\therefore \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}+\dfrac{2}{|OM|^2}=\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{4}{3}=2

同理,当 AB 所在直线 l_1x 轴重合时,
|OA|=|OB|=\dfrac{\sqrt{6}}{2},\;|OM|=\sqrt{3}
\therefore \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}+\dfrac{2}{|OM|^2}=2

AB 所在直线不与坐标轴重合时,设直线 l_1:y=kx
\because|MA|=|MB|
又易知 |OA|=|OB|
\therefore MAB 的垂直平分线上.
\thereforeOM 所在直线为 l_2:y=-\dfrac{1}{k}x
\begin{cases} x^2+2y^2=3\\ y=kx\\ \end{cases}\Rightarrow(2k^2+1)x^2=3

\therefore |OA|=\sqrt{x^2+y^2}=\sqrt{1+k^2}|x|
\begin{cases} x^2+2y^2=3\\ y=-\dfrac{1}{k}x\\ \end{cases}\Rightarrow(k^2+2)y^2=3

\therefore |OM|=\sqrt{x^2+y^2}=\sqrt{1+k^2}|y|

\begin{aligned} \therefore&\dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}+\dfrac{2}{|OM|^2}\\ =&\dfrac{2k^2+1}{3(1+k^2)}+\dfrac{2k^2+1}{3(1+k^2)}+\dfrac{2(k^2+2)}{3(1+k^2)}\\ =&2. \end{aligned}

Sol2:

取特殊位置:
AB 所在直线 l_1x 轴重合时,
易知 A、B 为左右顶点 |OA|=|OB|=\sqrt{3}
M 为上顶点或下顶点,有 |OM|=\dfrac{\sqrt{6}}{2}
\therefore \dfrac{1}{|OA|^2}+\dfrac{1}{|OB|^2}+\dfrac{2}{|OM|^2}=\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{4}{3}=2


例4

易知椭圆方程 \dfrac{x^2}{4}+y^2=1,\,A(2,0),\,B(0,1),设点 P 是椭圆上的一点,P 异于 A、B,直线 PAy 轴交于点 M,直线 PBx 轴交于点 N,求证 |AN|\cdot|BM| 为定值.

Sol:

P(x_0,y_0)
易知 AB 所在直线为 l_1:y=\dfrac{y_0}{x_0-2}(x-2)
x=0 ,得 y_M=\dfrac{-2y_0}{x_0-2}
\therefore |BM|=\left|1+\dfrac{2y_0}{x_0-2}\right|
同理知 x_N=\dfrac{-x_0}{y_0-1}
\therefore |AN|=\left|2+\dfrac{x_0}{y_0-1}\right|

\begin{aligned} &|AN|\cdot|BM|\\ =&\left|2+\dfrac{x_0}{y_0-1}\right|\cdot\left|1+\dfrac{2y_0}{x_0-2}\right|\\ =&\left|\dfrac{x_0+2y_0-2}{y_0-1}\cdot\dfrac{x_0+2y_0-2}{x_0-2}\right|\\ =&\left|\dfrac{x_0^2+4y^2+4x_0y_0-4x_0-8y_0+4}{x_0y_0-x_0-2y_0+2}\right| \end{aligned}
\dfrac{x_0^2}{4}+y_0^2=1 带入上式得
|AN|\cdot|BM|=4

Sol2:

取特殊点 P(0,-1)
易得 N(0,0),M(0,-1)\Rightarrow|AN|=2,\,|BM|=2
\therefore |AN|\cdot|BM|=4


例5

椭圆方程 \dfrac{x^2}{4}+y^2=1,\,A(2,0),\,B(0,1),设 P 是第三象限内一点且在椭圆 C 上,直线 PAy 轴交于点 M,直线 PBx 轴交于点 N,求证:四边形 ABNM 的面积为定值.

Sol:

由几何关系易知四边形 ABNM 的面积为 S=\dfrac{1}{2}|AN|\cdot|BM|=2


例6

已知抛物线 x^2=4y 的焦点为 F,\,A,\,B 是抛物线上的两个动点,且 \overrightarrow{AF}=\lambda\overrightarrow{FB}\;(\lambda>0) 过点 A、B 分别作抛物线的切线,设交点为 M,证明 \overrightarrow{FM}\cdot\overrightarrow{AB} 为定值.

Sol:

由题目知 F(0,1),设 A(x_1,y_1)、B(x_2,y_2)
\overrightarrow{AF}=\lambda\overrightarrow{FB}\;(\lambda>0)(-x_1,1-y_1)=\lambda(x_2,y_2-1)
\therefore\begin{cases} -x_1=\lambda x_2\\ 1-y_1=\lambda(y_2-1)\\ \end{cases}

-x_1=\lambda x_2\Rightarrow x_1^2=\lambda^2x_2^2
x_1^2=4y_1,\,x_2^2=4y_2
带入得 y_1=\lambda^2y_2

联立 \begin{cases} 1-y_1=\lambda(y_2-1)\\ y_1=\lambda^2 y_2 \end{cases} \Rightarrow \begin{cases} y_1=\lambda\\ y_2=\dfrac{1}{\lambda} \end{cases}

x_1x_2=-\lambda x_2^2=-4\lambda y_2=-4
过抛物线 A、B 两点的切线分别是
y=\dfrac{1}{2}x_1(x-x_1)+y_1,\,y=\dfrac{1}{2}x_2(x-x_2)+y_2
化简得 y=\dfrac{1}{2}x_1x-\dfrac{1}{4}x_1^2,\,y=\dfrac{1}{2}x_2x-\dfrac{1}{4}x_2^2

解得两条切线的交点 M 的坐标为 M\left(\dfrac{x_1+x_2}{2},\dfrac{x_1x_2}{4}\right)=\left(\dfrac{x_1+x_2}{2},-1\right)

所以
\begin{aligned} &\overrightarrow{FM}\cdot\overrightarrow{AB}\\ =&\left(\dfrac{x_1+x_2}{2},-2\right)\cdot(x_2-x_1,y_2-y_1)\\ =&\dfrac{1}{2}(x_2^2-x_1^2)-2(\dfrac{1}{4}x_2^2-\dfrac{1}{4}x_1^2)\\ =&0 \end{aligned}


上一篇下一篇

猜你喜欢

热点阅读