BatchNormalization

2017-10-19  本文已影响0人  苟且偷生小屁屁

为了证明BatchNormalization的作用,自己写了一个二次函数回归的小程序,从loss图上可以看出,确实是有BatchNormalization层时收敛的速度更快,另外本程序还使用了函数模型的写法,关于BatchNormalization的理论可以参考:https://arxiv.org/pdf/1502.03167v3.pdf

#coding:utf-8
from keras.layers import Dense
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model,Sequential
from keras.layers import Input,Dense,Activation,BatchNormalization
from keras.utils import plot_model

x_data = np.linspace(-5,5,3000)
np.random.shuffle(x_data)
noise = np.random.normal(0,1,x_data.shape)
y_data = x_data**2+5+noise

x_train = x_data[:2500]
y_train = y_data[:2500]

# plt.figure()
plt.scatter(x_train,y_train,marker='.')
# plt.close(1)

x_test = x_data[2500:]
y_test = y_data[2500:]

inputs = Input(shape=(1,))
x=Dense(3)(inputs)
x=BatchNormalization(axis=-1)(x)
x = Activation('sigmoid')(x)
x=Dense(3)(x)
x=BatchNormalization(axis=-1)(x)
x = Activation('sigmoid')(x)
x=Dense(3)(x)
outputs = Dense(1)(x)

model = Model(inputs=inputs,outputs=outputs)

plot_model(model,to_file='model.png',show_shapes=1)

model.compile(optimizer='sgd',loss='mse')

print('Train------------')
sum_cost=[]
for step in range(1001):
    cost = model.train_on_batch(x_train,y_train)
    sum_cost=np.append(sum_cost,cost)
    if step%100==0:
        print('cost=',cost)
plt.plot(range(1001),sum_cost)
plt.show()

#用预测的模型来预测y_test

loss = model.test_on_batch(x_test,y_test)

y_test = model.predict(x_test)

plt.figure()
plt.scatter(x_train,y_train,c='b',marker='.')

plt.scatter(x_test,y_test,c='r',marker='.')
plt.show()
Figure_3.png
上一篇 下一篇

猜你喜欢

热点阅读